Patents by Inventor David J. Tarnowski

David J. Tarnowski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11950372
    Abstract: Methods of making metal patterns on flexible substrates are provided. Releasable solid layer is selectively formed on a patterned surface of the flexible substrate by applying a liquid solution thereon. Metal patterns on the flexible substrate can be formed by removing the releasable solid layer after metallization. In some cases, the releasable solid layer can be transferred from the patterned surface to a transfer layer where the metal patterns are formed.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: April 2, 2024
    Assignee: 3M INNOVATION PROPERTIES
    Inventors: Henrik B. van Lengerich, Matthew S. Stay, Caleb T. Nelson, David J. Tarnowski, David J. Rowe, Edwin L. Kusilek
  • Publication number: 20240050951
    Abstract: An article includes a flexible structured film with a first major surface and a second major surface, wherein a first major surface of the flexible structured film has a plurality of posts separated by land areas, and the posts have an exposed surface. An anti-biofouling layer resides in the land areas, and the anti-biofouling layer has a methylated surface. An inorganic layer is on the exposed surfaces of the posts, wherein the inorganic layer includes a metal or a metal oxide. An analyte binding layer is on the inorganic layer, wherein the analyte binding layer is chosen from a reactive silane, a functionalizable hydrogel, a functionalizable polymer, and mixtures and combinations thereof. An exposed surface of the analyte binding layer includes at least one functional group selected to bind with a biochemical analyte.
    Type: Application
    Filed: November 24, 2021
    Publication date: February 15, 2024
    Inventors: Henrik B. van Lengerich, Caleb T. Nelson, Kayla C. Niccum, Jeffrey L. Solomon, Paul B. Armstrong, Joshua M. Fishman, Tonya D. Bonilla, Phillip D. Hustad, David J. Tarnowski
  • Publication number: 20240043989
    Abstract: Metallic nanohole (23) arrays on nanowells (22) with a controlled depth and methods of making and using the same are provided. A mesh pattern of metallic layer (8) having an array of nanoholes is provided on an array of nanowells, aligned with the openings of the respective nanowells. The aspect ratios (D:W) of the nanowells are controlled to control the deposition of metal into the nanowells.
    Type: Application
    Filed: December 28, 2021
    Publication date: February 8, 2024
    Inventors: Matthew R.D. Smith, David J. Tarnowski, Myungchan Kang, Caleb T. Nelson, Henrik B. van Lengerich, Christopher S. Lyons, Jeffrey L. Solomon, Bing Hao, Karl K. Stensvad
  • Publication number: 20240045324
    Abstract: Methods of forming an array of patterns on a substrate are provided. An array of protective tiles formed from a protectant resin is provided to cover an array of sub-regions on the substrate. An array of patterns is formed on the substrate by sequentially repeating steps (i) and (ii) for each sub-region: (i) removing the protective tile from one of the sub-regions to expose the first major surface underneath; and (ii) forming a pattern on the exposed first major surface within the one of the sub-regions.
    Type: Application
    Filed: December 8, 2021
    Publication date: February 8, 2024
    Inventors: Lucas J. Hunt, Ashley R. Sonnier, James Zhu, Edwin L. Kusilek, Paul B. Armstrong, William B. Kolb, Caleb T. Nelson, Jeffrey L. Solomon, James M. Nelson, Samuel R. Hei, David J. Tarnowski, Henrik B. van Lengerich
  • Publication number: 20210161018
    Abstract: Methods of making metal patterns on flexible substrates are provided. Releasable solid layer is selectively formed on a patterned surface of the flexible substrate by applying a liquid solution thereon. Metal patterns on the flexible substrate can be formed by removing the releasable solid layer after metallization. In some cases, the releasable solid layer can be transferred from the patterned surface to a transfer layer where the metal patterns are formed.
    Type: Application
    Filed: June 27, 2019
    Publication date: May 27, 2021
    Inventors: Henrik B. van Lengerich, Matthew S. Stay, Caleb T. Nelson, David J. Tarnowski, David J. Rowe, Edwin L. Kusilek
  • Patent number: 10838297
    Abstract: A method of patterning a cylindrical tool, including providing a stamp including a base and a layer of solid state ionic conductor thereon, applying a negative of a predetermined pattern of features on a major surface of the solid state ionic conductor, providing a cylindrical tool having a metallic surface positioned proximate the stamp, and applying an electric field between the metallic surface and a cathode while moving the stamp against the metallic surface in rolling line contact so as to impart the predetermined pattern of features onto the metallic surface, wherein the cathode is either the base or a conductive element positioned adjacent to the base. The positive of the predetermined pattern of features may include a multiplicity of nano-sized features.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: November 17, 2020
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: James Zhu, Daniel M. Lentz, Karl K. Stensvad, David J. Tarnowski
  • Publication number: 20190219919
    Abstract: A method of patterning a cylindrical tool, including providing a stamp including a base and a layer of solid state ionic conductor thereon, applying a negative of a predetermined pattern of features on a major surface of the solid state ionic conductor, providing a cylindrical tool having a metallic surface positioned proximate the stamp, and applying an electric field between the metallic surface and a cathode while moving the stamp against the metallic surface in rolling line contact so as to impart the predetermined pattern of features onto the metallic surface, wherein the cathode is either the base or a conductive element positioned adjacent to the base. The positive of the predetermined pattern of features may include a multiplicity of nano-sized features.
    Type: Application
    Filed: September 12, 2017
    Publication date: July 18, 2019
    Inventors: James Zhu, Daniel M. Lentz, Karl K. Stensvad, David J. Tarnowski