Patents by Inventor David Jaffray

David Jaffray has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11504075
    Abstract: Uptake of hypoxia-sensitive PET tracers is dependent on tissue transport properties, specifically, distribution volume. Variability in tissue transport properties reduces the sensitivity of static PET imaging to hypoxia. When tissue transport (vd) effects are substantial, correlations between the two methods of determining hypoxic fractions are greatly reduced—that is, trapping rates k3 are only modestly correlated with tumour-to-blood ratio (TBR). In other words, the usefulness of dynamic- and static-PET based hypoxia surrogates, trapping rate k3 and TBR, in determining hypoxic fractions is reduced in regions where diffusive equilibrium is achieved slowly. A process is provided for quantifying hypoxic fractions using a novel biomarker for hypoxia, hypoxia-sensitive tracer binding rate kb, based on PET imaging data. The same formalism can be applied to model the kinetics of non-binding CT and MT contrast agents, giving histopathological information about the imaged tissue.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: November 22, 2022
    Assignee: UNIVERSITY HEALTH NETWORK
    Inventors: Edward Taylor, David A. Jaffray, Ivan Wai Tong Yeung
  • Patent number: 11385360
    Abstract: Various embodiments are described herein for sensors that may be used to measure radiation from radiation generating device. The sensors may use a collector plate electrode with first and second collection regions having shapes that are inversely related with one another to provide ion chambers with varying sample volumes along a substantial portion of the first and second collection regions which provides virtual spatial sensitivity during use.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: July 12, 2022
    Assignee: University Health Network
    Inventors: Mohammad Khairul Islam, Robert K. Heaton, David A. Jaffray, Bernhard Dieter Norrlinger
  • Patent number: 11266383
    Abstract: Various embodiments are described herein for a system and a method for obtaining samples of tissue for analysis by mass spectrometry. A region of interest can be identified in tissue using image data from a first imaging modality that is other than mass spectrometry. At least one tissue sample can be acquired using a tissue sampler from a sampling location related to the region of interest. Mass spectrum data can be generated for the acquired tissue samples using a mass spectrometer. In some embodiments, polarimetry may be used on a tissue slice, mass spectrometry may be performed on the same tissue slice and then H&E imaging may be performed on the same tissue slice.
    Type: Grant
    Filed: September 22, 2016
    Date of Patent: March 8, 2022
    Assignee: University Health Network
    Inventors: Arash Zarrine-Afsar, David A. Jaffray, Alessandra Tata, Michael Woolman, Alexander Vitkin
  • Patent number: 11077214
    Abstract: The present application relates to compositions comprising an iodinated contrast agent and indocyanine green co-encapsulated inside a liposomal carrier, various uses thereof as well as methods for their preparation.
    Type: Grant
    Filed: May 26, 2014
    Date of Patent: August 3, 2021
    Assignee: University Health Network
    Inventors: Jinzi Zheng, David A. Jaffray, Christine Allen
  • Publication number: 20200002662
    Abstract: A high throughput automated assay platform for temporal image processing of cell growth and colony formation before and after radiation therapy treatments. The platform is designed to compute and monitor a therapeutic protocol by measuring sensitivity of cell growth to treatment based on a radiation therapy protocol. The platform is designed to detect relationships between the temporal images being tracked to colony formation behaviour.
    Type: Application
    Filed: February 17, 2017
    Publication date: January 2, 2020
    Inventors: David JAFFRAY, Bradley WOUTERS, Alexander Ralph Lino JAFFRAY, Ryan ELLIOTT
  • Patent number: 10497113
    Abstract: Embodiments disclose a method performed by at least one processor for processing a plurality of x-ray projection images of a subject, the method comprising a plurality of operations including reconstructing the projection images to yield a volume reconstruction; segmenting the reconstructed volume by assigning a material type to each voxel; estimating a first set of scatter images corresponding to a subset of the projection images by calculating probabilistic predictions of interactions of x-rays with the subject and applying a low pass spatial filter to the scatter images; estimating a second set of scatter images corresponding to projection images not included in the subset, based on the first set of scatter images; and subtracting, for each projection image, the corresponding scatter image to yield a corrected projection image.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: December 3, 2019
    Assignees: Elekta AB (publ), University Health Network
    Inventors: Marcus Hennix, Hakan Nordstrom, Markus Eriksson, Jonas Adler, David Jaffray, Gregory Bootsma, Frank Verhaegen, Bjorn Nutti
  • Publication number: 20190183437
    Abstract: Uptake of hypoxia-sensitive PET tracers is dependent on tissue transport properties, specifically, distribution volume. Variability in tissue transport properties reduces the sensitivity of static PET imaging to hypoxia. When tissue transport (vd) effects are substantial, correlations between the two methods of determining hypoxic fractions are greatly reduced—that is, trapping rates k3 are only modestly correlated with tumour-to-blood ratio (TBR). In other words, the usefulness of dynamic- and static-PET based hypoxia surrogates, trapping rate k3 and TBR, in determining hypoxic fractions is reduced in regions where diffusive equilibrium is achieved slowly. A process is provided for quantifying hypoxic fractions using a novel biomarker for hypoxia, hypoxia-sensitive tracer binding rate kb, based on PET imaging data. The same formalism can be applied to model the kinetics of non-binding CT and MT contrast agents, giving histopathological information about the imaged tissue.
    Type: Application
    Filed: December 20, 2018
    Publication date: June 20, 2019
    Inventors: Edward TAYLOR, David A. JAFFRAY, Ivan Wai Tong YEUNG
  • Publication number: 20180271502
    Abstract: Various embodiments are described herein for a system and a method for obtaining samples of tissue for analysis by mass spectrometry. A region of interest can be identified in tissue using image data from a first imaging modality that is other than mass spectrometry. At least one tissue sample can be acquired using a tissue sampler from a sampling location related to the region of interest. Mass spectrum data can be generated for the acquired tissue samples using a mass spectrometer. In some embodiments. polarimetry may be used on a tissue slice, mass spectrometry may be performed on the same tissue slice and then H&E imaging may be performed on the same tissue slice.
    Type: Application
    Filed: September 22, 2016
    Publication date: September 27, 2018
    Applicant: University Health Network
    Inventors: Arash Zarrine-Afsar, David A. Jaffray, Alessandra Tata, Michael Woolman, Alexander Vitkin
  • Publication number: 20180172845
    Abstract: Various embodiments are described herein for sensors that may be used to measure radiation from radiation generating device. The sensors may use a collector plate electrode with first and second collection regions having shapes that are inversely related with one another to provide ion chambers with varying sample volumes along a substantial portion of the first and second collection regions which provides virtual spatial sensitivity during use.
    Type: Application
    Filed: June 3, 2016
    Publication date: June 21, 2018
    Inventors: Mohammad Khairul Islam, Robert K. Heaton, David A. Jaffray, Bernhard Dieter Norrlinger
  • Patent number: 10001570
    Abstract: An apparatus for high resolution positron emission tomography (PET) imaging. The apparatus includes at least a first detector and a second detector arranged to detect gamma rays traveling from a target area, the first detector and the second detector being a detector pair. There is at least one collimator for filtering gamma rays reaching the first and second detectors. The collimator defines respective passages filtering gamma rays reaching the respective first and second detectors, the passages being defined to filter for only gamma ray pairs traveling from the target area at a predetermined range of angles with respect to each other, the predetermined range of angles being in the range of 180°-?E, where ?E is less than 1° and greater than 0°.
    Type: Grant
    Filed: February 29, 2016
    Date of Patent: June 19, 2018
    Assignee: UNIVERSITY HEALTH NETWORK
    Inventor: David A. Jaffray
  • Patent number: 9545231
    Abstract: A method and imaging system for operating imaging computed tomography using at least one radiation source and at least one detector to generate an image of an object. The method includes: defining desired image characteristics; and performing calculations to determine the pattern of fluence to be applied by the at least one radiation source, to generate said desired image quality or characteristics. Then, the at least one radiation source is modulated, to generate the intended pattern of fluence between the beam source and the object to be imaged. The desired image characteristics can provide at least one of: desired image quality in at least one defined region of interest; and at least one desired distribution of said image quality.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: January 17, 2017
    Assignee: UNIVERSITY HEALTH NETWORK
    Inventors: David A. Jaffray, Sean Alexander Graham, Jeffrey Harold Siewerdsen, Steven Joe Bartolac
  • Publication number: 20160314584
    Abstract: Embodiments disclose a method performed by at least one processor for processing a plurality of x-ray projection images of a subject, the method comprising a plurality of operations including reconstructing the projection images to yield a volume reconstruction; segmenting the reconstructed volume by assigning a material type to each voxel; estimating a first set of scatter images corresponding to a subset of the projection images by calculating probabilistic predictions of interactions of x-rays with the subject and applying a low pass spatial filter to the scatter images; estimating a second set of scatter images corresponding to projection images not included in the subset, based on the first set of scatter images; and subtracting, for each projection image, the corresponding scatter image to yield a corrected projection image.
    Type: Application
    Filed: December 18, 2014
    Publication date: October 27, 2016
    Applicants: Elekta AB (publ), University Health Network
    Inventors: Marcus HENNIX, Hakan NORDSTROM, Markus Eriksson, Jonas ADLER, David JAFFRAY, Gregory BOOTSMA, Frank VERHAEGEN, Bjorn NUTTI
  • Patent number: 9393326
    Abstract: There is provided signal modifying compositions for medical imaging comprising a carrier and signal modifying agents specific for two or more imaging modalities. The compositions are characterized by retention efficiency, with respect of the signal modifying agents that enables prolonged contrast imaging without significant depletion of the signal modifying agent from the carrier. The carriers of the present invention are lipid based or polymer based the physico-chemical properties of which can be modified to entrap or chelate different signal modifying agents and mixtures thereof and to target specific organs or tumors or tissues within a mammal.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: July 19, 2016
    Assignee: University Health Network
    Inventors: David Jaffray, Christine Allen, Jinzi Zheng, Raymond Matthew Reilly, Gregory Jason Perkins
  • Patent number: 9330490
    Abstract: Methods and systems for visualization of 3D parametric data in a 2D image. The set of 3D parametric data includes a plurality of voxels in 3D space each associated with at least one parametric value, and the set of 2D image data includes information about a known camera position and a known camera orientation at which the 2D image was obtained. A graphical representation is generated of the parametric values of the voxels corresponding to a viewing surface in 3D space. A virtual 2D view of the viewing surface is determined. The 2D image is displayed registered with the graphical representation of the parametric values of the voxels corresponding to the virtual 2D view.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: May 3, 2016
    Assignee: UNIVERSITY HEALTH NETWORK
    Inventors: Robert Weersink, David A. Jaffray, Jimmy Qiu, Andrew Hope, John Cho, Michael B. Sharpe
  • Publication number: 20160095944
    Abstract: The present application relates to compositions comprising an iodinated contrast agent and indocyanine green co-encapsulated inside a liposomal carrier, various uses thereof as well as methods for their preparation.
    Type: Application
    Filed: May 26, 2014
    Publication date: April 7, 2016
    Applicant: University Health Network
    Inventors: Jinzi Zheng, David A. Jaffray, Christine Allen
  • Patent number: 9138597
    Abstract: A method, computer program product and processor for quantitatively registering a 2D endoscopic ROI in a 3D volumetric imaging dataset. An endoscopic dataset and a volumetric imaging are registered to a common coordinate system. A 2D endoscopic ROI is generated within the endoscopic imaging dataset. A 3D surface ROI is generated within the volumetric imaging dataset corresponding to the 2D endoscopic ROI, based on a projection of the 2D endoscopic ROI to the registered common coordinate system.
    Type: Grant
    Filed: May 13, 2010
    Date of Patent: September 22, 2015
    Assignee: University Health Network
    Inventors: Robert Weersink, Andrew Hope, Jeff Siewerdsen, David Jaffray, Aidin Kashigar, Michael Daly, Jonathon Eubank, John Cho
  • Patent number: 9000401
    Abstract: A fiber optic dosimeter probe for sensing radiation dose including an optical fiber having a free end and a sensitive end, a window having a sensitive side and a rear side; a radiation sensitive layer between the sensitive end of the optical fiber and a sensitive side of the window, the radiation sensitive layer being made of a material having an optical property that changes with absorbed radiation dose, an amount of the material corresponding to a predetermined sensitivity to radiation; wherein the window and the optical fiber have a near water equivalent interaction with radiation and are MR compatible.
    Type: Grant
    Filed: July 6, 2011
    Date of Patent: April 7, 2015
    Assignees: Institut National D'Optique, University Health Network
    Inventors: Alexandra Rink, David Jaffray, Ozzy Mermut, Serge Caron, André Croteau, François Roy-Moisan
  • Publication number: 20140193330
    Abstract: There is provided signal modifying compositions for medical imaging comprising a carrier and signal modifying agents specific for two or more imaging modalities. The compositions are characterized by retention efficiency, with respect of the signal modifying agents that enables prolonged contrast imaging without significant depletion of the signal modifying agent from the carrier. The carriers of the present invention are lipid based or polymer based the physico-chemical properties of which can be modified to entrap or chelate different signal modifying agents and mixtures thereof and to target specific organs or tumors or tissues within a mammal.
    Type: Application
    Filed: March 12, 2014
    Publication date: July 10, 2014
    Applicant: University Health Network
    Inventors: David JAFFRAY, Christine ALLEN, Jinzi ZHENG, Raymond Matthew REILLY, Gregory Jason PERKINS
  • Patent number: 8710843
    Abstract: A magnetic resonance imaging (MRI) apparatus suitable for radiotherapy. The apparatus includes two sets of coil pairs, each coil pair forming a Maxwell-like coil. The two sets of coil pairs share a common transverse plane, have opposing polarities, and define a common plane of symmetry and an imaging area. The two sets generate a substantially homogenous electromagnetic field in a first transverse direction in the imaging area and peripheral electromagnetic fields in a direction opposite to the first transverse direction in a peripheral area. The apparatus also includes at least one focusing magnet positioned in the peripheral areas to generate a focusing electromagnetic field in a focusing area, in a direction substantially the same as the first transverse direction. At least a portion of the peripheral electromagnetic fields is maintained in a defocusing area between the focusing area and the imaging area.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: April 29, 2014
    Assignee: University Health Network
    Inventors: Marco Carlo Carlone, David A. Jaffray
  • Patent number: 8703097
    Abstract: Provided are signal modifying compositions for medical imaging comprising a carrier and two or more signal modifying agents specific for two or more imaging modalities. The compositions are characterized by retention efficiency, with respect to the signal modifying agents, which enables prolonged contrast imaging without significant depletion of the signal modifying agents from the carrier. The carriers of the present invention are lipid based or polymer based, the physico-chemical properties of which can be modified to entrap or chelate different signal modifying agents and mixtures thereof and to target specific organs or tumors or tissues within a mammal.
    Type: Grant
    Filed: February 10, 2006
    Date of Patent: April 22, 2014
    Assignee: University Health Network
    Inventors: David Jaffray, Christine Allen, Jinzi Zheng, Raymond Matthew Reilly, Gregory Jason Perkins