Patents by Inventor David James Earnshaw

David James Earnshaw has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11473067
    Abstract: The invention relates to modified polymerase enzymes which exhibit improved incorporation of nucleotide analogues bearing substituents at the 3? position of the sugar moiety that are larger in size than the naturally occurring 3? hydroxyl group. Also described are methods of using the polymerases to incorporate nucleotides into polynucleotides, particularly in the context of DNA sequencing.
    Type: Grant
    Filed: August 24, 2021
    Date of Patent: October 18, 2022
    Assignee: ILLUMINA CAMBRIDGE LIMITED
    Inventors: Geoffrey Paul Smith, David Mark Dunstan Bailey, Raquel Maria Sanches-Kuiper, Harold Swerdlow, David James Earnshaw
  • Publication number: 20220025342
    Abstract: The invention relates to modified polymerase enzymes which exhibit improved incorporation of nucleotide analogues bearing substituents at the 3? position of the sugar moiety that are larger in size than the naturally occurring 3? hydroxyl group. Also described are methods of using the polymerases to incorporate nucleotides into polynucleotides, particularly in the context of DNA sequencing.
    Type: Application
    Filed: August 24, 2021
    Publication date: January 27, 2022
    Applicant: Illumina Cambridge Limited
    Inventors: Geoffrey Paul Smith, David Mark Dunstan Bailey, Raquel Maria Sanches-Kuiper, Harold Swerdlow, David James Earnshaw
  • Publication number: 20220010290
    Abstract: The invention relates to modified polymerase enzymes which exhibit improved incorporation of nucleotide analogues bearing substituents at the 3? position of the sugar moiety that are larger in size than the naturally occurring 3?hydroxyl group. Also described are methods of using the polymerases to incorporate nucleotides into polynucleotides, particularly in the context of DNA sequencing.
    Type: Application
    Filed: September 24, 2021
    Publication date: January 13, 2022
    Applicant: Illumina Cambridge Limited
    Inventors: Geoffrey Paul Smith, David Mark Dunstan Bailey, Raquel Maria Sanches-Kuiper, Harold Swerdlow, David James Earnshaw
  • Patent number: 11136564
    Abstract: The invention relates to modified polymerase enzymes which exhibit improved incorporation of nucleotide analogues bearing substituents at the 3? position of the sugar moiety that are larger in size than the naturally occurring 3? hydroxyl group. Also described are methods of using the polymerases to incorporate nucleotides into polynucleotides, particularly in the context of DNA sequencing.
    Type: Grant
    Filed: June 26, 2018
    Date of Patent: October 5, 2021
    Assignee: Illumina Cambridge Limited
    Inventors: Geoffrey Paul Smith, David Mark Dunstan Bailey, Raquel Maria Sanches-Kuiper, Harold Swerdlow, David James Earnshaw
  • Patent number: 10710046
    Abstract: The invention relates to methods of generating templates for a nucleic acid sequencing reaction which comprise: providing at least one double-stranded nucleic acid molecule, wherein both strands of the double-stranded nucleic acid molecule are attached to a solid support at the 5? end, cleaving one or both strands of the double-stranded nucleic acid molecule, and subjecting the cleaved strand(s) to denaturing conditions to remove the portion of the cleaved strand(s) not attached to the solid support, thereby generating a partially or substantially single-stranded template for a nucleic acid sequencing reaction.
    Type: Grant
    Filed: June 18, 2018
    Date of Patent: July 14, 2020
    Assignee: Illumina Cambridge Limited
    Inventors: Xiaohai Liu, John Milton, Geoffrey Paul Smith, Colin Lloyd Barnes, Isabelle Rasolonjatovo, Roberto Rigatti, Xiaolin Wu, Tobias William Barr Ost, Graham John Worsley, David James Earnshaw, Gerardo Turcatti, Anthony Romieu
  • Publication number: 20180353926
    Abstract: The invention relates to methods of generating templates for a nucleic acid sequencing reaction which comprise: providing at least one double-stranded nucleic acid molecule, wherein both strands of the double-stranded nucleic acid molecule are attached to a solid support at the 5? end, cleaving one or both strands of the double-stranded nucleic acid molecule, and subjecting the cleaved strand(s) to denaturing conditions to remove the portion of the cleaved strand(s) not attached to the solid support, thereby generating a partially or substantially single-stranded template for a nucleic acid sequencing reaction.
    Type: Application
    Filed: June 18, 2018
    Publication date: December 13, 2018
    Applicant: Illumina Cambridge Limited
    Inventors: Xiaohai Liu, John Milton, Geoffrey Paul Smith, Colin Lloyd Barnes, Isabelle Rasolonjatovo, Roberto Rigatti, Xiaolin Wu, Tobias William Barr Ost, Graham John Worsley, David James Earnshaw, Gerardo Turcatti, Anthony Romieu
  • Publication number: 20180298358
    Abstract: The invention relates to modified polymerase enzymes which exhibit improved incorporation of nucleotide analogues bearing substituents at the 3? position of the sugar moiety that are larger in size than the naturally occurring 3? hydroxyl group. Also described are methods of using the polymerases to incorporate nucleotides into polynucleotides, particularly in the context of DNA sequencing.
    Type: Application
    Filed: June 26, 2018
    Publication date: October 18, 2018
    Applicant: Illumina Cambridge Limited
    Inventors: Geoffrey Paul Smith, David Mark Dunstan Bailey, Raquel Maria Sanches-Kuiper, Harold Swerdlow, David James Earnshaw
  • Patent number: 10017750
    Abstract: The invention relates to modified polymerase enzymes which exhibit improved incorporation of nucleotide analogs bearing substituents at the 3? position of the sugar moiety that are larger in size than the naturally occurring 3? hydroxyl group. Also described are methods of using the polymerases to incorporate nucleotides into polynucleotides, particularly in the context of DNA sequencing.
    Type: Grant
    Filed: August 25, 2016
    Date of Patent: July 10, 2018
    Assignee: ILLUMINA CAMBRIDGE LIMITED
    Inventors: Geoffrey Paul Smith, David Mark Dunstan Bailey, Raquel Maria Sanches-Kuiper, Harold Swerdlow, David James Earnshaw
  • Patent number: 9999866
    Abstract: The invention relates to methods of generating templates for a nucleic acid sequencing reaction which comprise: providing at least one double-stranded nucleic acid molecule, wherein both strands of the double-stranded nucleic acid molecule are attached to a solid support at the 5? end, cleaving one or both strands of the double-stranded nucleic acid molecule, and subjecting the cleaved strand(s) to denaturing conditions to remove the portion of the cleaved strand(s) not attached to the solid support, thereby generating a partially or substantially single-stranded template for a nucleic acid sequencing reaction.
    Type: Grant
    Filed: October 6, 2016
    Date of Patent: June 19, 2018
    Assignee: ILLUMINA CAMBRIDGE LIMITED
    Inventors: Xiaohai Liu, John Milton, Geoffrey Paul Smith, Colin Lloyd Barnes, Isabelle Rasolonjatovo, Roberto Rigatti, Xiaolin Wu, Tobias William Barr Ost, Graham John Worsley, David James Earnshaw, Gerardo Turcatti, Anthony Romieu
  • Publication number: 20170021325
    Abstract: The invention relates to methods of generating templates for a nucleic acid sequencing reaction which comprise: providing at least one double-stranded nucleic acid molecule, wherein both strands of the double-stranded nucleic acid molecule are attached to a solid support at the 5? end, cleaving one or both strands of the double-stranded nucleic acid molecule, and subjecting the cleaved strand(s) to denaturing conditions to remove the portion of the cleaved strand(s) not attached to the solid support, thereby generating a partially or substantially single-stranded template for a nucleic acid sequencing reaction.
    Type: Application
    Filed: October 6, 2016
    Publication date: January 26, 2017
    Inventors: Xiaohai Liu, John Milton, Geoffrey Paul Smith, Colin Lloyd Barnes, Isabelle Rasolonjatovo, Roberto Rigatti, Xiaolin Wu, Tobias William Barr Ost, Graham John Worsley, David James Earnshaw, Gerardo Turcatti, Anthony Romieu
  • Publication number: 20160362664
    Abstract: The invention relates to modified polymerase enzymes which exhibit improved incorporation of nucleotide analogues bearing substituents at the 3? position of the sugar moiety that are larger in size than the naturally occurring 3? hydroxyl group. Also described are methods of using the polymerases to incorporate nucleotides into polynucleotides, particularly in the context of DNA sequencing.
    Type: Application
    Filed: August 25, 2016
    Publication date: December 15, 2016
    Applicant: Illumina Cambridge Limited
    Inventors: Geoffrey Paul Smith, David Mark Dunstan Bailey, Raquel Maria Sanches-Kuiper, Harold Swerdlow, David James Earnshaw
  • Patent number: 9498763
    Abstract: The invention relates to methods of generating templates for a nucleic acid sequencing reaction which comprise: providing at least one double-stranded nucleic acid molecule, wherein both strands of the double-stranded nucleic acid molecule are attached to a solid support at the 5? end, cleaving one or both strands of the double-stranded nucleic acid molecule, and subjecting the cleaved strand(s) to denaturing conditions to remove the portion of the cleaved strand(s) not attached to the solid support, thereby generating a partially or substantially single-stranded template for a nucleic acid sequencing reaction.
    Type: Grant
    Filed: June 12, 2015
    Date of Patent: November 22, 2016
    Assignee: Illumina Cambridge Limited
    Inventors: Xiaohai Liu, John Milton, Geoffrey Paul Smith, Colin Lloyd Barnes, Isabelle Rasolonjatovo, Roberto Rigatti, Xiaolin Wu, Tobias William Barr Ost, Graham John Worsley, David James Earnshaw, Gerardo Turcatti, Anthony Romieu
  • Patent number: 9447389
    Abstract: The invention relates to modified polymerase enzymes which exhibit improved incorporation of nucleotide analogs bearing substituents at the 3? position of the sugar moiety that are larger in size than the naturally occurring 3? hydroxyl group. Also described are methods of using the polymerases to incorporate nucleotides into polynucleotides, particularly in the context of DNA sequencing.
    Type: Grant
    Filed: September 3, 2014
    Date of Patent: September 20, 2016
    Assignee: Illumina Cambridge Limited
    Inventors: Geoffrey Paul Smith, David Mark Dunstan Bailey, Raquel Maria Sanches-Kuiper, Harold Swerdlow, David James Earnshaw
  • Patent number: 9328378
    Abstract: The invention relates to a method of preparing a library of template polynucleotides which reduces and/or prevents the formation of adaptor-dimers. The invention also relates to the use of a library of templates prepared using the method of the invention for solid-phase nucleic acid amplification. In particular, the invention relates to a method of preparing a library of template polynucleotides which have common sequences at their 5? ends and at their 3? ends which is substantially free of adaptor-dimers.
    Type: Grant
    Filed: July 30, 2007
    Date of Patent: May 3, 2016
    Assignee: Illumina Cambridge Limited
    Inventors: David James Earnshaw, Niall Anthony Gormley, Helen Rachel Bignell, Melanie Anne Smith
  • Publication number: 20150343410
    Abstract: The invention relates to methods of generating templates for a nucleic acid sequencing reaction which comprise: providing at least one double-stranded nucleic acid molecule, wherein both strands of the double-stranded nucleic acid molecule are attached to a solid support at the 5? end, cleaving one or both strands of the double-stranded nucleic acid molecule, and subjecting the cleaved strand(s) to denaturing conditions to remove the portion of the cleaved strand(s) not attached to the solid support, thereby generating a partially or substantially single-stranded template for a nucleic acid sequencing reaction.
    Type: Application
    Filed: June 12, 2015
    Publication date: December 3, 2015
    Applicant: ILLUMINA CAMBRIDGE LIMITED
    Inventors: Xiaohai Liu, John Milton, Geoffrey Paul Smith, Colin Lloyd Barnes, Isabelle Rasolonjatovo, Roberto Rigatti, Xiaolin Wu, Tobias William Barr Ost, Graham John Worsley, David James Earnshaw, Gerardo Turcatti, Anthony Romieu
  • Patent number: 9085802
    Abstract: The invention relates to methods of generating templates for a nucleic acid sequencing reaction which comprise: providing at least one double-stranded nucleic acid molecule, wherein both strands of the double-stranded nucleic acid molecule are attached to a solid support at the 5? end, cleaving one or both strands of the double-stranded nucleic acid molecule, and subjecting the cleaved strand(s) to denaturing conditions to remove the portion of the cleaved strand(s) not attached to the solid support, thereby generating a partially or substantially single-stranded template for a nucleic acid sequencing reaction.
    Type: Grant
    Filed: January 28, 2014
    Date of Patent: July 21, 2015
    Assignee: Illumina Cambridge Limited
    Inventors: Xiaohai Liu, John Milton, Geoffrey Paul Smith, Colin Lloyd Barnes, Isabelle Marie Julia Rasolonjatovo, Roberto Rigatti, Xiaolin Wu, Tobias William Barr Ost, Graham John Worsley, David James Earnshaw, Gerardo Turcatti, Anthony Romieu
  • Publication number: 20150024463
    Abstract: The invention relates to modified polymerase enzymes which exhibit improved incorporation of nucleotide analogues bearing substituents at the 3? position of the sugar moiety that are larger in size than the naturally occurring 3? hydroxyl group. Also described are methods of using the polymerases to incorporate nucleotides into polynucleotides, particularly in the context of DNA sequencing.
    Type: Application
    Filed: September 3, 2014
    Publication date: January 22, 2015
    Applicant: ILLUMINA CAMBRIDGE LIMITED
    Inventors: Geoffrey Paul Smith, David Mark Dunstan Bailey, Raquel Maria Sanches-Kuiper, Harold Swerdlow, David James Earnshaw
  • Publication number: 20140349891
    Abstract: The invention relates to methods of generating templates for a nucleic acid sequencing reaction which comprise: providing at least one double-stranded nucleic acid molecule, wherein both strands of the double-stranded nucleic acid molecule are attached to a solid support at the 5? end, cleaving one or both strands of the double-stranded nucleic acid molecule, and subjecting the cleaved strand(s) to denaturing conditions to remove the portion of the cleaved strand(s) not attached to the solid support, thereby generating a partially or substantially single-stranded template for a nucleic acid sequencing reaction,
    Type: Application
    Filed: January 28, 2014
    Publication date: November 27, 2014
    Applicant: ILLUMINA CAMBRIDGE LIMITED
    Inventors: Xiaohai Liu, John Milton, Geoffrey Paul Smith, Colin Lloyd Barnes, Isabelle Marie Julia Rasolonjatovo, Roberto Rigatti, Xiaolin Wu, Tobias William Barr Ost, Graham John Worsley, David James Earnshaw, Gerardo Turcatti, Anthony Romieu
  • Patent number: 8852910
    Abstract: The invention relates to modified polymerase enzymes which exhibit improved incorporation of nucleotide analogs bearing substituents at the 3? position of the sugar moiety that are larger in size than the naturally occurring 3? hydroxyl group. Also described are methods of using the polymerases to incorporate nucleotides into polynucleotides, particularly in the context of DNA sequencing.
    Type: Grant
    Filed: April 4, 2013
    Date of Patent: October 7, 2014
    Assignee: Illumina Cambridge Limited
    Inventors: Geoffrey Paul Smith, David Mark Dunstan Bailey, Raquel Maria Sanches-Kuiper, Hardold Swerdlow, David James Earnshaw
  • Patent number: 8715966
    Abstract: The invention relates to methods of generating templates for a nucleic acid sequencing reaction which comprise: providing at least one double-stranded nucleic acid molecule, wherein both strands of the double-stranded nucleic acid molecule are attached to a solid support at the 5? end, cleaving one or both strands of the double-stranded nucleic acid molecule, and subjecting the cleaved strand(s) to denaturing conditions to remove the portion of the cleaved strand(s) not attached to the solid support, thereby generating a partially or substantially single-stranded template for a nucleic acid sequencing reaction.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: May 6, 2014
    Assignee: Illumina Cambridge Limited
    Inventors: Liu Xiaohai, John Milton, Geoffrey Paul Smith, Colin Lloyd Barnes, Isabelle Marie Julia Rasolonjatovo, Roberto Rigatti, Xiaolin Wu, Tobias William Barr Ost, Graham John Worsley, David James Earnshaw, Gerardo Turcatti, Anthony Romieu