Patents by Inventor David John DiGiovanni

David John DiGiovanni has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8980369
    Abstract: Adverse hydrogen aging limitations in multiply-doped optical fibers are overcome by passivating these optical fibers using a deuterium passivation process. This treatment essentially pre-reacts the glass with deuterium so that the most active glass sites are no longer available to react with hydrogen in service. Optical fibers of main interest are doped with mixtures of germanium and phosphorus. Optimum passivating process conditions are described.
    Type: Grant
    Filed: May 21, 2013
    Date of Patent: March 17, 2015
    Assignee: OFS Fitel, LLC
    Inventors: David John DiGiovanni, Robert Lingle, Jr., Michael J LuValle, George E Oulundsen, Durgesh Shivram Vaidya
  • Publication number: 20130323414
    Abstract: Adverse hydrogen aging limitations in multiply-doped optical fibers are overcome by passivating these optical fibers using a deuterium passivation process. This treatment essentially pre-reacts the glass with deuterium so that the most active glass sites are no longer available to react with hydrogen in service. Optical fibers of main interest are doped with mixtures of germanium and phosphorus. Optimum passivating process conditions are described.
    Type: Application
    Filed: May 21, 2013
    Publication date: December 5, 2013
    Applicant: OFS FITEL, LLC
    Inventors: David John DiGiovanni, Robert L. Lingle, Michael J. LuValle, George E. Oulundsen, Durgesh Vaidya
  • Patent number: 8515231
    Abstract: Described is a method of fabricating an optical fiber preform that includes a deep index trench comprising a shallower outer trench portion formed on a substrate tube and a deeper inner trench portion formed on the shallower outer trench portion. Each of the shallower outer trench and deeper inner trench portions comprises multiple silica layers. The method comprises the steps of: (1) forming each layer of the shallower outer trench portion in a single-pass deposition of a F-containing silica layer; and (2) forming each layer of the deeper inner portion in a double-pass deposition in which, in a first pass, a layer of silica soot is deposited and then, in a second pass, the soot is sintered in the presence of SiF4.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: August 20, 2013
    Assignee: OFS Fitel, LLC
    Inventors: Peter Ingo Borel, David John DiGiovanni, John Michael Fini, Poul Kristensen
  • Publication number: 20130091899
    Abstract: An optical fiber that is relatively insensitive to bend loss and alleviates the problem of catastrophic bend loss configured to support and guide the propagation of light in a fundamental transverse mode. The cladding region includes an outer cladding region, a pedestal region, an inner trench region, and an outer trench region. The pedestal region and the outer cladding region each have a refractive index relatively close to that of the outer cladding region. To suppress HOMs the pedestal region is configured to resonantly couple at least one (unwanted) transverse mode of the core region (other than the fundamental mode) to at least one transverse mode of the pedestal region. Also described are multi-tube fabrication techniques for making such fibers as well as single-pass/double-pass fabrication techniques for making the trench regions of such fibers.
    Type: Application
    Filed: September 6, 2012
    Publication date: April 18, 2013
    Applicant: OFS FITEL, LLC
    Inventors: Peter Ingo Borel, David John DiGiovanni, John Michael Fini, Poul Kristensen
  • Patent number: 8320726
    Abstract: Described are multi-tube fabrication techniques for making an optical fiber that is relatively insensitive to bend loss and alleviates the problem of catastrophic bend loss comprises a core region and a cladding region configured to support and guide the propagation of light in a fundamental transverse mode. The cladding region includes (i) an outer cladding region, (ii) an annular pedestal (or ring) region, (iii) an annular inner trench region, and (iv) an annular outer trench region. The pedestal region and the outer cladding region each have a refractive index relatively close to that of the outer cladding region. In order to suppress HOMs the pedestal region is configured to resonantly couple at least one (unwanted) transverse mode of the core region (other than the fundamental mode) to at least one transverse mode of the pedestal region.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: November 27, 2012
    Assignee: OFS Fitel, LLC
    Inventors: Peter Ingo Borel, David John DiGiovanni, John Michael Fini, Poul Kristensen
  • Publication number: 20120159995
    Abstract: An optical fiber that is relatively insensitive to bend loss and alleviates the problem of catastrophic bend loss comprises a core region and a cladding region configured to support and guide the propagation of light in a fundamental transverse mode. The cladding region includes (i) an outer cladding region, (ii) an annular pedestal (or ring) region, (iii) an annular inner trench region, and (iv) an annular outer trench region. The pedestal region and the outer cladding region each have a refractive index relatively close to that of the outer cladding region. In order to suppress HOMs the pedestal region is configured to resonantly couple at least one (unwanted) transverse mode of the core region (other than the fundamental mode) to at least one transverse mode of the pedestal region. In a preferred embodiment, the fiber is configured so that, at a signal wavelength of approximately 1550 nm, its bend loss is no more than about 0.1 dB/turn at bend radius of 5 mm and is no more than about 0.
    Type: Application
    Filed: December 15, 2011
    Publication date: June 28, 2012
    Inventors: Peter Ingo Borel, David John DiGiovanni, John Michael Fini, Poul Kristensen
  • Patent number: 8107784
    Abstract: An optical fiber that is relatively insensitive to bend loss and alleviates the problem of catastrophic bend loss comprises a core region and a cladding region configured to support and guide the propagation of light in a fundamental transverse mode. The cladding region includes (i) an outer cladding region, (ii) an annular pedestal (or ring) region, (iii) an annular inner trench region, and (iv) an annular outer trench region. The pedestal region and the outer cladding region each have a refractive index relatively close to that of the outer cladding region. In order to suppress HOMs the pedestal region is configured to resonantly couple at least one (unwanted) transverse mode of the core region (other than the fundamental mode) to at least one transverse mode of the pedestal region. In a preferred embodiment, the fiber is configured so that, at a signal wavelength of approximately 1550 nm, its bend loss is no more than about 0.1 dB/turn at bend radius of 5 mm and is no more than about 0.
    Type: Grant
    Filed: May 27, 2009
    Date of Patent: January 31, 2012
    Assignee: OFS Fitel, LLC
    Inventors: Peter Ingo Borel, David John DiGiovanni, John Michael Fini, Poul Kristensen
  • Patent number: 7916386
    Abstract: Optical apparatus includes a multimode, gain-producing fiber for providing gain to signal light propagating in the core of the fiber, and a pump source for providing pump light that is absorbed in the core, characterized in that (i) the pump source illustratively comprises a low brightness array of laser diodes and a converter for increasing the brightness of the pump light, (ii) the pump light is coupled directly into the core, and (iii) the area of the core exceeds approximately 350 ?m2. In one embodiment, the signal light propagates in a single mode, and the pump light co-propagates in at least the same, single mode, both in a standard input fiber before entering the gain-producing fiber, and a mode expander is disposed between the input fiber and the gain-producing fiber. In another embodiment, multiple pumps are coupled into the core of the gain-producing fiber. The pumps may generate light of the same wavelength or of different wavelengths.
    Type: Grant
    Filed: January 26, 2007
    Date of Patent: March 29, 2011
    Assignee: OFS Fitel, LLC
    Inventors: David John DiGiovanni, Clifford Everill Headley
  • Patent number: 7787733
    Abstract: An optical transmission fiber is formed to include a relatively low-index, relatively thin outer cladding layer disposed underneath the protective polymer outer coating. Stray light propagating along an inner cladding layer(s) within the fiber will be refracted into the thin outer cladding (by proper selection of refractive index values). The thin dimension of the outer cladding layer allows for the stray light to “leak” into the outer coating in a controlled, gradual manner so as to minimize heating of the coating associated with the presence of stray light. The inventive fiber may also be bent to assist in the movement of stray light into the coating.
    Type: Grant
    Filed: September 8, 2008
    Date of Patent: August 31, 2010
    Assignee: Furukawa Electric North America, Inc.
    Inventors: David John DiGiovanni, Yoshihiro Emori, Michael Fishteyn, Clifford Headley
  • Patent number: 7760978
    Abstract: An optical transmission fiber is formed to include a relatively low-index, relatively thin outer cladding layer disposed underneath the protective polymer outer coating. Stray light propagating along an inner cladding layer(s) within the fiber will be refracted into the thin outer cladding (by proper selection of refractive index values). The thin dimension of the outer cladding layer allows for the stray light to “leak” into the outer coating in a controlled, gradual manner so as to minimize heating of the coating associated with the presence of stray light. The inventive fiber may also be bent to assist in the movement of stray light into the coating.
    Type: Grant
    Filed: September 8, 2008
    Date of Patent: July 20, 2010
    Assignee: DFS Fitel LLC
    Inventors: David John DiGiovanni, Yoshihiro Emori, Michael Fishteyn, Clifford Headley
  • Publication number: 20090290841
    Abstract: An optical fiber that is relatively insensitive to bend loss and alleviates the problem of catastrophic bend loss comprises a core region and a cladding region configured to support and guide the propagation of light in a fundamental transverse mode. The cladding region includes (i) an outer cladding region, (ii) an annular pedestal (or ring) region, (iii) an annular inner trench region, and (iv) an annular outer trench region. The pedestal region and the outer cladding region each have a refractive index relatively close to that of the outer cladding region. In order to suppress HOMs the pedestal region is configured to resonantly couple at least one (unwanted) transverse mode of the core region (other than the fundamental mode) to at least one transverse mode of the pedestal region. In a preferred embodiment, the fiber is configured so that, at a signal wavelength of approximately 1550 nm, its bend loss is no more than about 0.1 dB/turn at bend radius of 5 mm and is no more than about 0.
    Type: Application
    Filed: May 27, 2009
    Publication date: November 26, 2009
    Applicant: OFS Fitel, LLC
    Inventors: Peter Ingo Borel, David John DiGiovanni, John Michael Fini, Poul Kristensen
  • Publication number: 20090067795
    Abstract: An optical transmission fiber is formed to include a relatively low-index, relatively thin outer cladding layer disposed underneath the protective polymer outer coating. Stray light propagating along an inner cladding layer(s) within the fiber will be refracted into the thin outer cladding (by proper selection of refractive index values). The thin dimension of the outer cladding layer allows for the stray light to “leak” into the outer coating in a controlled, gradual manner so as to minimize heating of the coating associated with the presence of stray light. The inventive fiber may also be bent to assist in the movement of stray light into the coating.
    Type: Application
    Filed: September 8, 2008
    Publication date: March 12, 2009
    Inventors: David John DiGiovanni, Yoshihiro Emori, Michael Fishteyn, Clifford Headley
  • Publication number: 20090016681
    Abstract: An optical transmission fiber is formed to include a relatively low-index, relatively thin outer cladding layer disposed underneath the protective polymer outer coating. Stray light propagating along an inner cladding layer(s) within the fiber will be refracted into the thin outer cladding (by proper selection of refractive index values). The thin dimension of the outer cladding layer allows for the stray light to “leak” into the outer coating in a controlled, gradual manner so as to minimize heating of the coating associated with the presence of stray light. The inventive fiber may also be bent to assist in the movement of stray light into the coating.
    Type: Application
    Filed: September 8, 2008
    Publication date: January 15, 2009
    Inventors: David John DiGiovanni, Yoshihiro Emori, Michael Fishteyn, Clifford Headley
  • Publication number: 20080267560
    Abstract: An all-fiber mode-field resizer comprises a first optical fiber configured to propagate signal light in a predetermined transverse mode along a longitudinal axis from a first input/output (I/O) port to a second I/O port. The first fiber is configured to have a first effective mode-field area and a first core V-parameter proximate the first I/O port and to have a second effective mode-field area and a second core V-parameter proximate the second I/O port. The second mode-field area is greater than the first mode-field area, and the second V-parameter is less than the first V-parameter. In one embodiment, the second V-parameter is less than approximately 1.3, and preferably less than 1.0. In another embodiment, the first V-parameter is greater than approximately 1.8. In yet another embodiment, our mode-field resizer is incorporated into a tapered fiber bundle.
    Type: Application
    Filed: April 30, 2007
    Publication date: October 30, 2008
    Inventors: David John DiGiovanni, Clifford Everill Headley, Andrew Douglas Yablon
  • Patent number: 7437046
    Abstract: An optical transmission fiber is formed to include a relatively low-index, relatively thin outer cladding layer disposed underneath the protective polymer outer coating. Stray light propagating along an inner cladding layer(s) within the fiber will be refracted into the thin outer cladding (by proper selection of refractive index values). The thin dimension of the outer cladding layer allows for the stray light to “leak” into the outer coating in a controlled, gradual manner so as to minimize heating of the coating associated with the presence of stray light. The inventive fiber may also be bent to assist in the movement of stray light into the coating.
    Type: Grant
    Filed: February 12, 2007
    Date of Patent: October 14, 2008
    Assignee: Furukawa Electric North America, Inc.
    Inventors: David John DiGiovanni, Yoshihiro Emori, Michael Fishteyn, Clifford Headley
  • Publication number: 20080193093
    Abstract: An optical transmission fiber is formed to include a relatively low-index, relatively thin outer cladding layer disposed underneath the protective polymer outer coating. Stray light propagating along an inner cladding layer(s) within the fiber will be refracted into the thin outer cladding (by proper selection of refractive index values). The thin dimension of the outer cladding layer allows for the stray light to “leak” into the outer coating in a controlled, gradual manner so as to minimize heating of the coating associated with the presence of stray light. The inventive fiber may also be bent to assist in the movement of stray light into the coating.
    Type: Application
    Filed: February 12, 2007
    Publication date: August 14, 2008
    Inventors: David John DiGiovanni, Yoshihiro Emori, Michael Fishteyn, Clifford Headley
  • Publication number: 20080180787
    Abstract: Optical apparatus includes a multimode, gain-producing fiber for providing gain to signal light propagating in the core of the fiber, and a pump source for providing pump light that is absorbed in the core, characterized in that (i) the pump source illustratively comprises a low brightness array of laser diodes and a converter for increasing the brightness of the pump light, (ii) the pump light is coupled directly into the core, and (iii) the area of the core exceeds approximately 350 ?m2. In one embodiment, the signal light propagates in a single mode, and the pump light co-propagates in at least the same, single mode, both in a standard input fiber before entering the gain-producing fiber, and a mode expander is disposed between the input fiber and the gain-producing fiber. In another embodiment, multiple pumps are coupled into the core of the gain-producing fiber. The pumps may generate light of the same wavelength or of different wavelengths.
    Type: Application
    Filed: January 26, 2007
    Publication date: July 31, 2008
    Inventors: David John DiGiovanni, Clifford Everill Headley
  • Patent number: 7043128
    Abstract: The specification describes a technique for drawing circular core multimode optical fiber using twist during draw to increase fiber bandwidth.
    Type: Grant
    Filed: February 25, 2004
    Date of Patent: May 9, 2006
    Assignee: Furukawa Electric North America
    Inventors: David John DiGiovanni, Frank Vincent DiMarcello, XinLi Jiang, George E. Oulundsen, Sandeep Prabhakar Pandit
  • Patent number: 6966201
    Abstract: Techniques are described for fabricating a preform from a soot body. In one described technique, a soot body is loaded into a substrate tube, and the position of the soot body is stabilized within the tube. The tube is then rotated around its longitudinal axis. Heat is applied from a heat source to the substrate tube at a first end of the soot body to cause the first end of the soot body to begin to sinter and to cause the substrate tube to begin to at least partially collapse around the sintered portion of the soot body. The heat source is then advanced along the substrate tube and the soot body to cause a progressive sintering of the soot body, and to cause a progressive, at least partial, collapse of the substrate tube around the sintered portion of the soot body.
    Type: Grant
    Filed: August 16, 2002
    Date of Patent: November 22, 2005
    Assignee: Furukawa Electric North America, Inc.
    Inventors: David John DiGiovanni, Kyunghwan Oh
  • Patent number: 6899470
    Abstract: Systems and techniques are described for fabricating a low-loss, high-strength optical transmission line. In one described technique, a first fiber is spliced to a second fiber at a splice point. The spliced fibers are loaded into a heat treatment station, where a gas torch flame is used to thermally treat a splice region including the splice point, with the thermal treatment reducing splice loss between the first and second fibers. While heating the splice region, a dry gas is purged around the torch flame during the heat treatment process to avoid water at the surface of the spliced fibers. According to further described techniques, a purging gas is fed to the torch flame to purge dust particles from the flame, and after the heat treatment has been completed, the torch flame is used to restore the glass surface of the spliced fibers. Additionally described are torch assemblies for fabricating low-loss, high-strength optical fiber transmission lines.
    Type: Grant
    Filed: July 17, 2002
    Date of Patent: May 31, 2005
    Assignee: Fitel USA Corp.
    Inventors: David John DiGiovanni, Torben E. Veng