Patents by Inventor David John Guckenberger, Jr.

David John Guckenberger, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230053732
    Abstract: A sample holder for PCR processing. The sample holder includes a body with an inlet and outlet grooves formed alongside each other, a detection recess that is connected to the inlet and outlet grooves, and a fill port interconnected to both the inlet and outlet grooves, and a cover interfacing with the body to form an inlet channel interconnected to the fill port, a detection region interconnected to the inlet channel, and an outlet channel interconnected to the detection region and the fill port. The detection region is configured to receive a PCR solution from the fill port and replication occurs within the detection region via heating and cooling cycles. Thereafter, fluorescent emissions from tagged replicated DNA/RNA in the detection region are detected and measured. PCR stations, PCR station assemblies, PCR testing systems, and methods of operating a PCR testing systems are provided, as are other aspects.
    Type: Application
    Filed: February 8, 2021
    Publication date: February 23, 2023
    Applicant: Siemens Healthcare Diagnostics Inc.
    Inventors: Daniel CHU, Paul PATT, Garret BAUTISTA, David John GUCKENBERGER, JR.
  • Publication number: 20220193668
    Abstract: An integrated microfluidic unit with pipette adaptation. The integrated microfluidic unit may be accommodated within a pipette tip rack for storage prior to use and may be received by a translating pipette head during use. The number of components required within the laboratory instrument is reduced compared to processes employing discrete microfluidic chips and pipette tips. Processes involving microfluidic devices integrated into the presently disclosed unit are streamlined at least by the elimination of discrete manipulation steps associated with aspirating sample fluid into a pipette tip, then using a discrete chip feeder or manipulator to bring the chip and pipette tip into fluidic communication for transfer of the sample to the chip. The number of consumables is also reduced by the integration of microfluidics with physical features enabling fluid aspiration and unit conveyance. A variety of microfluidic devices and channel configurations may be accommodated.
    Type: Application
    Filed: January 21, 2020
    Publication date: June 23, 2022
    Applicant: Siemens Healthcare Diagnostics Inc.
    Inventor: David John Guckenberger, Jr.