Patents by Inventor David John Keyes

David John Keyes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8154242
    Abstract: A fuel cell system that includes a fuel cell stack and an EESD electrically coupled to a common high voltage bus line. The EESD has a higher voltage output than the fuel cell stack, and thus the stack is unable to fully charge the EESD, for example, at system shut-down. In order to allow the fuel cell stack to fully charge the EESD, the EESD is separated into a plurality of separate electrical storage banks having lower voltage potentials. A series of contactors are provided to electrically couple the storage banks in series during normal system operation, and separately charge the storage banks using the fuel cell stack so that they are fully charged. The series of contactors can also be configured so that the storage banks can be electrically coupled in series during normal operation of the system and be electrically coupled in parallel during charging at system shut-down.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: April 10, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Kristian M. Whitehouse, David John Keyes, Joseph J. Ferrero
  • Patent number: 7862943
    Abstract: A hybrid fuel cell system that employs a fuel cell stack and an ultracapacitor. A diode is provided on a high voltage electrical bus between the fuel cell stack and the ultracapacitor so that high voltage from the ultracapacitor does not affect the operation of the fuel cell stack. During system start-up, a by-pass switch is closed to by-pass the ultracapacitor so that power from the ultracapacitor can be used to start various system loads, such as a cathode side air compressor that provides air to the fuel cell stack. A 12 volt-to-high voltage converter is employed to provide a low power, high voltage supply from a low voltage battery to the system loads at start-up when the by-pass switch is opened, but before a fuel cell stack switch is closed.
    Type: Grant
    Filed: August 1, 2008
    Date of Patent: January 4, 2011
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Matthew K. Hortop, David John Keyes, Ellen Greifenstein, Kazuyuki Izawa, Kengo Ikeya
  • Publication number: 20100040931
    Abstract: A fuel cell system that includes a single enclosure for all of a fuel cell stack and other stack critical electronics and components, such as power distribution components, voltage monitoring and detecting components, electrical isolation components, etc. The single enclosure offers a number of advantages, such as reduced weight and reduced complexity for service and safety.
    Type: Application
    Filed: August 12, 2008
    Publication date: February 18, 2010
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Matthew K. Hortop, Bernd Peter Elgas, Robert S. Foley, David John Keyes
  • Publication number: 20100028727
    Abstract: A hybrid fuel cell system that employs a fuel cell stack and an ultracapacitor. A diode is provided on a high voltage electrical bus between the fuel cell stack and the ultracapacitor so that high voltage from the ultracapacitor does not affect the operation of the fuel cell stack. During system start-up, a by-pass switch is closed to by-pass the ultracapacitor so that power from the ultracapacitor can be used to start various system loads, such as a cathode side air compressor that provides air to the fuel cell stack. A 12 volt-to-high voltage converter is employed to provide a low power, high voltage supply from a low voltage battery to the system loads at start-up when the by-pass switch is opened, but before a fuel cell stack switch is closed.
    Type: Application
    Filed: August 1, 2008
    Publication date: February 4, 2010
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Matthew K. Hortop, David John Keyes, Ellen Greifenstein, Kazuyuki Izawa, Kengo Ikeya
  • Publication number: 20090243536
    Abstract: A fuel cell system that includes a fuel cell stack and an EESD electrically coupled to a common high voltage bus line. The EESD has a higher voltage output than the fuel cell stack, and thus the stack is unable to fully charge the EESD, for example, at system shut-down. In order to allow the fuel cell stack to fully charge the EESD, the EESD is separated into a plurality of separate electrical storage banks having lower voltage potentials. A series of contactors are provided to electrically couple the storage banks in series during normal system operation, and separately charge the storage banks using the fuel cell stack so that they are fully charged. The series of contactors can also be configured so that the storage banks can be electrically coupled in series during normal operation of the system and be electrically coupled in parallel during charging at system shut-down.
    Type: Application
    Filed: March 26, 2008
    Publication date: October 1, 2009
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Kristian M. Whitehouse, David John Keyes, Joseph J. Ferrero