Patents by Inventor David John Shepard

David John Shepard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9995167
    Abstract: A blade monitoring system and method for a turbine assembly comprising rotating blades (14), the system comprising at least one sensor (10, 12) for transmitting a signal towards said rotating blades and detecting a time-varying return signal therefrom, and one or more processors (20) configured to calculate the time derivative of said return signal, generate a phase variation signal for said time derivative, determine minima points within said phase variation signal and measure said signal at said minima points so as to identify data representative of respective minimum path lengths, each said minimum path length corresponding to the returned signal as each respective blade passes said sensor, and generate, using said minimum path lengths, a time series of data representing the returned signal from individual blades as they pass the sensor.
    Type: Grant
    Filed: July 28, 2015
    Date of Patent: June 12, 2018
    Assignee: BAE SYSTEMS PLC
    Inventor: David John Shepard
  • Patent number: 9784827
    Abstract: A method for suppressing the Jet Engine Modulation (JEM) clutter signal returns from compressor blades (26) in data sampled by a system for Foreign Object Debris (FOD) detection in the air intake (30) of a turbine assembly, the method comprising the steps of: (a) identifying in the data the start sample position and length in samples of a single complete shaft rotation; and (b) subtracting from a current rotation dataset the samples from a comparison rotation dataset corresponding to another complete single shaft rotation.
    Type: Grant
    Filed: July 28, 2015
    Date of Patent: October 10, 2017
    Assignee: BAE Systems plc
    Inventors: David John Shepard, John Michael Wood
  • Publication number: 20170219699
    Abstract: A method for suppressing the Jet Engine Modulation (JEM) clutter signal returns from compressor blades (26) in data sampled by a system for Foreign Object Debris (FOD) detection in the air intake (30) of a turbine assembly, the method comprising the steps of: (a) identifying in the data the start sample position and length in samples of a single complete shaft rotation; and (b) subtracting from a current rotation dataset the samples from a comparison rotation dataset corresponding to another complete single shaft rotation.
    Type: Application
    Filed: July 28, 2015
    Publication date: August 3, 2017
    Applicant: BAE Systems plc
    Inventors: David John Shepard, John Michael Wood
  • Publication number: 20170211411
    Abstract: A blade monitoring system and method for a turbine assembly comprising rotating blades (14), the system comprising at least one sensor (10, 12) for transmitting a signal towards said rotating blades and detecting a time-varying return signal therefrom, and one or more processors (20) configured to calculate the time derivative of said return signal, generate a phase variation signal for said time derivative, determine minima points within said phase variation signal and measure said signal at said minima points so as to identify data representative of respective minimum path lengths, each said minimum path length corresponding to the returned signal as each respective blade passes said sensor, and generate, using said minimum path lengths, a time series of data representing the returned signal from individual blades as they pass the sensor.
    Type: Application
    Filed: July 28, 2015
    Publication date: July 27, 2017
    Inventor: David John Shepard
  • Publication number: 20170214110
    Abstract: A dielectric loaded antenna, and method of designing same, for use in a high temperature environment, the antenna comprising an outer casing (14) of a material having a melting point of at least 1000° C., said outer casing (14) defining an inner channel, a first end of the channel defined by the casing defining a radiating aperture loaded with a section (Z4) of dielectric material of a first type which is chemically stable at a temperature of at least 1500° C., and a remaining length of said channel being loaded with sections (ZO-Z3) of at least one second type of dielectric material which is chemically stable at a temperature of at least 800° C., the dielectric constant of said first type of dielectric material being greater than that of the second type of dielectric material.
    Type: Application
    Filed: July 28, 2015
    Publication date: July 27, 2017
    Inventors: David John SHEPARD, Barbara Helen WRIGHT