Patents by Inventor David Joseph Winston Hansquine

David Joseph Winston Hansquine has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10424392
    Abstract: Read-assist circuits for memory bit cells employing a P-type Field-Effect Transistor (PFET) read port(s) are disclosed. Related memory systems and methods are also disclosed. It has been observed that as node technology is scaled down in size, PFET drive current (i.e., drive strength) exceeds N-type FET (NFET) drive current for like-dimensioned FETs. In this regard, in one aspect, it is desired to provide memory bit cells having PFET read ports, as opposed to NFET read ports, to increase memory read times to the memory bit cells, and thus improve memory read performance. To mitigate or avoid a read disturb condition that could otherwise occur when reading the memory bit cell, read-assist circuits are provided for memory bit cells having PFET read ports.
    Type: Grant
    Filed: October 19, 2018
    Date of Patent: September 24, 2019
    Assignee: QUALCOMM Incorporated
    Inventors: Francois Ibrahim Atallah, Keith Alan Bowman, David Joseph Winston Hansquine, Jihoon Jeong, Hoan Huu Nguyen
  • Patent number: 10224084
    Abstract: Write-assist circuits for memory bit cells (“bit cells”) employing a P-type Field-Effect transistor (PFET) write port(s) are disclosed. Related methods and systems are also disclosed. It has been observed that as node technology is scaled down in size, PFET drive current (i.e., drive strength) exceeds N-type Field-Effect transistor (NFET) drive current for like-dimensioned FETs. In this regard, in one aspect, it is desired to provide bit cells having PFET write ports, as opposed to NFET write ports, to reduce memory write times to the bit cells, and thus improve memory performance. To mitigate a write contention that could otherwise occur when writing data to bit cells, a write-assist circuit provided in the form of negative wordline boost circuit can be employed to strengthen a PFET access transistor in a memory bit cell having a PFET write port(s).
    Type: Grant
    Filed: September 27, 2017
    Date of Patent: March 5, 2019
    Assignee: QUALCOMM Incorporated
    Inventors: Jihoon Jeong, Francois Ibrahim Atallah, Keith Alan Bowman, David Joseph Winston Hansquine, Hoan Huu Nguyen
  • Publication number: 20190057757
    Abstract: Read-assist circuits for memory bit cells employing a P-type Field-Effect Transistor (PFET) read port(s) are disclosed. Related memory systems and methods are also disclosed. It has been observed that as node technology is scaled down in size, PFET drive current (i.e., drive strength) exceeds N-type FET (NFET) drive current for like-dimensioned FETs. In this regard, in one aspect, it is desired to provide memory bit cells having PFET read ports, as opposed to NFET read ports, to increase memory read times to the memory bit cells, and thus improve memory read performance. To mitigate or avoid a read disturb condition that could otherwise occur when reading the memory bit cell, read-assist circuits are provided for memory bit cells having PFET read ports.
    Type: Application
    Filed: October 19, 2018
    Publication date: February 21, 2019
    Inventors: Francois Ibrahim Atallah, Keith Alan Bowman, David Joseph Winston Hansquine, Jihoon Jeong, Hoan Huu Nguyen
  • Patent number: 10163490
    Abstract: P-type Field-effect Transistor (PFET)-based sense amplifiers for reading PFET pass-gate memory bit cells (“bit cells”). Related methods and systems are also disclosed. Sense amplifiers are provided in a memory system to sense bit line voltage(s) of the bit cells for reading the data stored in the bit cells. It has been observed that as node technology is scaled down in size, PFET drive current (i.e., drive strength) exceeds N-type Field-effect Transistor (NFET) drive current due for like-dimensioned FETs. In this regard, in one aspect, PFET-based sense amplifiers are provided in a memory system to increase memory read times to the bit cells, and thus improve memory read performance.
    Type: Grant
    Filed: September 23, 2015
    Date of Patent: December 25, 2018
    Assignee: QUALCOMM Incorporated
    Inventors: Hoan Huu Nguyen, Francois Ibrahim Atallah, Keith Alan Bowman, David Joseph Winston Hansquine, Jihoon Jeong
  • Patent number: 10115481
    Abstract: Read-assist circuits for memory bit cells employing a P-type Field-Effect Transistor (PFET) read port(s) are disclosed. Related memory systems and methods are also disclosed. It has been observed that as node technology is scaled down in size, PFET drive current (i.e., drive strength) exceeds N-type FET (NFET) drive current for like-dimensioned FETs. In this regard, in one aspect, it is desired to provide memory bit cells having PFET read ports, as opposed to NFET read ports, to increase memory read times to the memory bit cells, and thus improve memory read performance. To mitigate or avoid a read disturb condition that could otherwise occur when reading the memory bit cell, read-assist circuits are provided for memory bit cells having PFET read ports.
    Type: Grant
    Filed: July 10, 2017
    Date of Patent: October 30, 2018
    Assignee: QUALCOMM Incorporated
    Inventors: Francois Ibrahim Atallah, Keith Alan Bowman, David Joseph Winston Hansquine, Jihoon Jeong, Hoan Huu Nguyen
  • Patent number: 10026456
    Abstract: Write-assist circuits for memory bit cells (“bit cells”) employing a P-type Field-Effect transistor (PFET) write port(s) are disclosed. Related methods and systems are also disclosed. It has been observed that as node technology is scaled down in size, PFET drive current (i.e., drive strength) exceeds N-type Field-Effect transistor (NFET) drive current for like-dimensioned FETs. In this regard, in one aspect, it is desired to provide bit cells having PFET write ports, as opposed to NFET write ports, to reduce memory write times to the bit cells, and thus improve memory performance. To mitigate a write contention that could otherwise occur when writing data to bit cells, a write-assist circuit provided in the form of positive bitline boost circuit can be employed to strengthen a PFET access transistor in a memory bit cell having a PFET write port(s).
    Type: Grant
    Filed: September 23, 2015
    Date of Patent: July 17, 2018
    Assignee: QUALCOMM Incorporated
    Inventors: Jihoon Jeong, Francois Ibrahim Atallah, Keith Alan Bowman, David Joseph Winston Hansquine, Hoan Huu Nguyen
  • Patent number: 9984730
    Abstract: Write-assist circuits for memory bit cells (“bit cells”) employing a P-type Field-Effect transistor (PFET) write port(s) are disclosed. Related methods and systems are also disclosed. It has been observed that as node technology is scaled down in size, PFET drive current (i.e., drive strength) exceeds N-type Field-Effect transistor (NFET) drive current for like-dimensioned FETs. In this regard, in one aspect, it is desired to provide bit cells having PFET write ports, as opposed to NFET write ports, to reduce memory write times to the bit cells, and thus improve memory performance. To mitigate a write contention that could otherwise occur when writing data to bit cells, a write-assist circuit provided in the form of a negative supply rail positive boost circuit can be employed to weaken an NFET pull-down transistor in a storage circuit of a memory bit cells having a PFET write port(s).
    Type: Grant
    Filed: September 23, 2015
    Date of Patent: May 29, 2018
    Assignee: QUALCOMM Incorporated
    Inventors: Jihoon Jeong, Francois Ibrahim Atallah, Keith Alan Bowman, David Joseph Winston Hansquine, Hoan Huu Nguyen
  • Patent number: 9947406
    Abstract: Dynamic tag compare circuits employing P-type Field-Effect Transistor (PFET)-dominant evaluation circuits for reduced evaluation time, and thus increased circuit performance, are provided. A dynamic tag compare circuit may be used or provided as part of searchable memory, such as a register file or content-addressable memory (CAM), as non-limiting examples. The dynamic tag compare circuit includes one or more PFET-dominant evaluation circuits comprised of one or more PFETs used as logic to perform a compare logic function. The PFET-dominant evaluation circuits are configured to receive and compare input search data to a tag(s) (e.g., addresses or data) contained in a searchable memory to determine if the input search data is contained in the memory. The PFET-dominant evaluation circuits are configured to control the voltage/value on a dynamic node in the dynamic tag compare circuit based on the evaluation of whether the received input search data is contained in the searchable memory.
    Type: Grant
    Filed: September 22, 2015
    Date of Patent: April 17, 2018
    Assignee: QUALCOMM Incorporated
    Inventors: Keith Alan Bowman, Francois Ibrahim Atallah, David Joseph Winston Hansquine, Jihoon Jeong, Hoan Huu Nguyen
  • Publication number: 20180033465
    Abstract: Write-assist circuits for memory bit cells (“bit cells”) employing a P-type Field-Effect transistor (PFET) write port(s) are disclosed. Related methods and systems are also disclosed. It has been observed that as node technology is scaled down in size, PFET drive current (i.e., drive strength) exceeds N-type Field-Effect transistor (NFET) drive current for like-dimensioned FETs. In this regard, in one aspect, it is desired to provide bit cells having PFET write ports, as opposed to NFET write ports, to reduce memory write times to the bit cells, and thus improve memory performance. To mitigate a write contention that could otherwise occur when writing data to bit cells, a write-assist circuit provided in the form of negative wordline boost circuit can be employed to strengthen a PFET access transistor in a memory bit cell having a PFET write port(s).
    Type: Application
    Filed: September 27, 2017
    Publication date: February 1, 2018
    Inventors: Jihoon Jeong, Francois Ibrahim Atallah, Keith Alan Bowman, David Joseph Winston Hansquine, Hoan Huu Nguyen
  • Patent number: 9882609
    Abstract: Embodiments described herein are related to contactless data communication. Related systems and methods for contactless data communication are disclosed herein. For example, a magnetic field-based contactless transmitter is disclosed that includes a substrate, a pair of dipole coils disposed on the substrate, and a drive circuit electrically coupled to the pair of dipole coils. To transmit data to a magnetic tunnel junction (MTJ) receiver disposed on a second substrate, the drive circuit is configured to drive the pair of dipole coils so as to generate a magnetic field in-plane to the MTJ receiver. Data can be transmitted from the magnetic field-based contactless transmitter to the MTJ receiver using the magnetic field.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: January 30, 2018
    Assignee: QUALCOMM Incorporated
    Inventors: Wenqing Wu, Senthil Kumar Govindaswamy, Raghu Sagar Madala, Peiyuan Wang, Kendrick Hoy Leong Yuen, David Joseph Winston Hansquine
  • Patent number: 9842634
    Abstract: Write-assist circuits for memory bit cells (“bit cells”) employing a P-type Field-Effect transistor (PFET) write port(s) are disclosed. Related methods and systems are also disclosed. It has been observed that as node technology is scaled down in size, PFET drive current (i.e., drive strength) exceeds N-type Field-Effect transistor (NFET) drive current for like-dimensioned FETs. In this regard, in one aspect, it is desired to provide bit cells having PFET write ports, as opposed to NFET write ports, to reduce memory write times to the bit cells, and thus improve memory performance. To mitigate a write contention that could otherwise occur when writing data to bit cells, a write-assist circuit provided in the form of negative wordline boost circuit can be employed to strengthen a PFET access transistor in a memory bit cell having a PFET write port(s).
    Type: Grant
    Filed: September 23, 2015
    Date of Patent: December 12, 2017
    Assignee: QUALCOMM Incorporated
    Inventors: Jihoon Jeong, Francois Ibrahim Atallah, Keith Alan Bowman, David Joseph Winston Hansquine, Hoan Huu Nguyen
  • Publication number: 20170316838
    Abstract: Read-assist circuits for memory bit cells employing a P-type Field-Effect Transistor (PFET) read port(s) are disclosed. Related memory systems and methods are also disclosed. It has been observed that as node technology is scaled down in size, PFET drive current (i.e., drive strength) exceeds N-type FET (NFET) drive current for like-dimensioned FETs. In this regard, in one aspect, it is desired to provide memory bit cells having PFET read ports, as opposed to NFET read ports, to increase memory read times to the memory bit cells, and thus improve memory read performance. To mitigate or avoid a read disturb condition that could otherwise occur when reading the memory bit cell, read-assist circuits are provided for memory bit cells having PFET read ports.
    Type: Application
    Filed: July 10, 2017
    Publication date: November 2, 2017
    Inventors: Francois Ibrahim Atallah, Keith Alan Bowman, David Joseph Winston Hansquine, Jihoon Jeong, Hoan Huu Nguyen
  • Patent number: 9741452
    Abstract: Read-assist circuits for memory bit cells employing a P-type Field-Effect Transistor (PFET) read port(s) are disclosed. Related memory systems and methods are also disclosed. It has been observed that as node technology is scaled down in size, PFET drive current (i.e., drive strength) exceeds N-type FET (NFET) drive current for like-dimensioned FETs. In this regard, in one aspect, it is desired to provide memory bit cells having PFET read ports, as opposed to NFET read ports, to increase memory read times to the memory bit cells, and thus improve memory read performance. To mitigate or avoid a read disturb condition that could otherwise occur when reading the memory bit cell, read-assist circuits are provided for memory bit cells having PFET read ports.
    Type: Grant
    Filed: September 23, 2015
    Date of Patent: August 22, 2017
    Assignee: QUALCOMM Incorporated
    Inventors: Francois Ibrahim Atallah, Keith Alan Bowman, David Joseph Winston Hansquine, Jihoon Jeong, Hoan Huu Nguyen
  • Patent number: 9627064
    Abstract: Dynamic tag compare circuits employing P-type Field-Effect Transistor (PFET)-dominant evaluation circuits for reduced evaluation time, and thus increased circuit performance, are provided. A dynamic tag compare circuit may be used or provided as part of searchable memory, such as a register file or content-addressable memory (CAM), as non-limiting examples. The dynamic tag compare circuit includes one or more PFET-dominant evaluation circuits comprised of one or more PFETs used as logic to perform a compare logic function. The PFET-dominant evaluation circuits are configured to receive and compare input search data to a tag(s) (e.g., addresses or data) contained in a searchable memory to determine if the input search data is contained in the memory. The PFET-dominant evaluation circuits are configured to control the voltage/value on a dynamic node in the dynamic tag compare circuit based on the evaluation of whether the received input search data is contained in the searchable memory.
    Type: Grant
    Filed: September 22, 2015
    Date of Patent: April 18, 2017
    Assignee: QUALCOMM Incorporated
    Inventors: Keith Alan Bowman, Francois Ibrahim Atallah, David Joseph Winston Hansquine, Jihoon Jeong, Hoan Huu Nguyen
  • Publication number: 20170090508
    Abstract: The clock frequency of a processor is reduced in response to a dispatch stall due to a cache miss. In an embodiment, the processor clock frequency is reduced for a load instruction that causes a last level cache miss, provided that the load instruction is the oldest load instruction and the number of consecutive processor cycles in which there is a dispatch stall exceeds a threshold, and provided that the total number of processor cycles since the last level cache miss does not exceed some specified number.
    Type: Application
    Filed: September 25, 2015
    Publication date: March 30, 2017
    Inventors: Shivam PRIYADARSHI, Anil KRISHNA, Raguram DAMODARAN, Jeffrey Todd BRIDGES, Thomas Philip SPEIER, Rodney Wayne SMITH, Keith Alan BOWMAN, David Joseph Winston HANSQUINE
  • Publication number: 20170019153
    Abstract: Embodiments described herein are related to contactless data communication. Related systems and methods for contactless data communication are disclosed herein. For example, a magnetic field-based contactless transmitter is disclosed that includes a substrate, a pair of dipole coils disposed on the substrate, and a drive circuit electrically coupled to the pair of dipole coils. To transmit data to a magnetic tunnel junction (MTJ) receiver disposed on a second substrate, the drive circuit is configured to drive the pair of dipole coils so as to generate a magnetic field in-plane to the MTJ receiver. Data can be transmitted from the magnetic field-based contactless transmitter to the MTJ receiver using the magnetic field.
    Type: Application
    Filed: September 29, 2016
    Publication date: January 19, 2017
    Inventors: Wenqing Wu, Senthil Kumar Govindaswamy, Raghu Sagar Madala, Peiyuan Wang, Kendrick Hoy Leong Yuen, David Joseph Winston Hansquine
  • Patent number: 9495899
    Abstract: Embodiments described herein are related to contactless data communication. Related systems and methods for contactless data communication are disclosed herein. For example, a magnetic field-based contactless transmitter is disclosed that includes a substrate, a pair of dipole coils disposed on the substrate, and a drive circuit electrically coupled to the pair of dipole coils. To transmit data to a magnetic tunnel junction (MTJ) receiver disposed on a second substrate, the drive circuit is configured to drive the pair of dipole coils so as to generate a magnetic field in-plane to the MTJ receiver. Data can be transmitted from the magnetic field-based contactless transmitter to the MTJ receiver using the magnetic field.
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: November 15, 2016
    Assignee: QUALCOMM Incorporated
    Inventors: Wenqing Wu, Senthil Kumar Govindaswamy, Raghu Sagar Madala, Peiyuan Wang, Kendrick Hoy Leong Yuen, David Joseph Winston Hansquine
  • Patent number: 9429982
    Abstract: Systems and methods are directed to a configurable last level driver coupled to a inductor-capacitor (LC) tank or resonant clock, for improving energy efficiency of the resonant clock. In a warm up stage, the last level clock driver can be enabled to store energy in the LC tank, and in a gating stage, the last level clock driver can be fully or partially disabled such that energy stored in the LC tank can be recirculated into a clock distribution network. In a refreshing stage, the last level clock driver can be enabled to replenish the energy lost by the LC tank in the recirculation of energy into the clock distribution network during the gating stage. Programmable counters can be used to control durations of the warm up, gating, and refreshing stages.
    Type: Grant
    Filed: September 27, 2014
    Date of Patent: August 30, 2016
    Assignee: QUALCOMM Incorporated
    Inventors: Francois Ibrahim Atallah, David Joseph Winston Hansquine, Richard Duane Tax, Robert Simpson Taylor
  • Publication number: 20160247558
    Abstract: Write-assist circuits for memory bit cells (“bit cells”) employing a P-type Field-Effect transistor (PFET) write port(s) are disclosed. Related methods and systems are also disclosed. It has been observed that as node technology is scaled down in size, PFET drive current (i.e., drive strength) exceeds N-type Field-Effect transistor (NFET) drive current for like-dimensioned FETs. In this regard, in one aspect, it is desired to provide bit cells having PFET write ports, as opposed to NFET write ports, to reduce memory write times to the bit cells, and thus improve memory performance. To mitigate a write contention that could otherwise occur when writing data to bit cells, a write-assist circuit provided in the form of a negative supply rail positive boost circuit can be employed to weaken an NFET pull-down transistor in a storage circuit of a memory bit cells having a PFET write port(s).
    Type: Application
    Filed: September 23, 2015
    Publication date: August 25, 2016
    Inventors: Jihoon Jeong, Francois Ibrahim Atallah, Keith Alan Bowman, David Joseph Winston Hansquine, Hoan Huu Nguyen
  • Publication number: 20160247559
    Abstract: Read-assist circuits for memory bit cells employing a P-type Field-Effect Transistor (PFET) read port(s) are disclosed. Related memory systems and methods are also disclosed. It has been observed that as node technology is scaled down in size, PFET drive current (i.e., drive strength) exceeds N-type FET (NFET) drive current for like-dimensioned FETs. In this regard, in one aspect, it is desired to provide memory bit cells having PFET read ports, as opposed to NFET read ports, to increase memory read times to the memory bit cells, and thus improve memory read performance. To mitigate or avoid a read disturb condition that could otherwise occur when reading the memory bit cell, read-assist circuits are provided for memory bit cells having PFET read ports.
    Type: Application
    Filed: September 23, 2015
    Publication date: August 25, 2016
    Inventors: Francois Ibrahim Atallah, Keith Alan Bowman, David Joseph Winston Hansquine, Jihoon Jeong, Hoan Huu Nguyen