Patents by Inventor David Jurbergs

David Jurbergs has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10983263
    Abstract: An eyepiece and waveguide for viewing a projected image in a virtual reality and augmented reality imaging and visualization system. The waveguide may include a substrate for guiding light. The waveguide may also include an incoupling diffractive element disposed within or on the substrate and configured to diffract an incoupled light related to the projected image into the substrate. The waveguide may further include a first grating disposed within or on the substrate and configured to manipulate the diffracted incoupled light from the incoupling diffractive element so as to multiply the projected image and to direct the multiplied projected image to a second grating. The second grating may be disposed within or on the substrate and may be configured to outcouple the manipulated diffracted incoupled light from the waveguide. The first grating and the second grating may occupy a same region of the waveguide.
    Type: Grant
    Filed: August 22, 2017
    Date of Patent: April 20, 2021
    Assignee: Magic Leap, Inc.
    Inventors: David Kleinman, Samarth Bhargava, Victor K. Liu, David Jurbergs
  • Patent number: 10823894
    Abstract: A method of manufacturing a waveguide having a combination of a binary grating structure and a blazed grating structure includes cutting a substrate off-axis, depositing a first layer on the substrate, and depositing a resist layer on the first layer. The resist layer includes a pattern. The method also includes etching the first layer in the pattern using the resist layer as a mask. The pattern includes a first region and a second region. The method further includes creating the binary grating structure in the substrate in the second region and creating the blazed grating structure in the substrate in the first region.
    Type: Grant
    Filed: October 8, 2019
    Date of Patent: November 3, 2020
    Assignee: Magic Leaps, Inc.
    Inventors: Christophe Peroz, Mauro Melli, Vikramjit Singh, David Jurbergs, Jeffrey Dean Schmulen, Zongxing Wang, Shuqiang Yang, Frank Y. Xu, Kang Luo, Marlon Edward Menezes, Michael Nevin Miller
  • Publication number: 20200041712
    Abstract: A method of manufacturing a waveguide having a combination of a binary grating structure and a blazed grating structure includes cutting a substrate off-axis, depositing a first layer on the substrate, and depositing a resist layer on the first layer. The resist layer includes a pattern. The method also includes etching the first layer in the pattern using the resist layer as a mask. The pattern includes a first region and a second region. The method further includes creating the binary grating structure in the substrate in the second region and creating the blazed grating structure in the substrate in the first region.
    Type: Application
    Filed: October 8, 2019
    Publication date: February 6, 2020
    Applicant: Magic Leap, Inc.
    Inventors: Christophe Peroz, Mauro Melli, Vikramjit Singh, David Jurbergs, Jeffrey Dean Schmulen, Zongxing Wang, Shuqiang Yang, Frank Y. Xu, Kang Luo, Marlon Edward Menezes, Michael Nevin Miller
  • Patent number: 10481317
    Abstract: A method of manufacturing a waveguide having a combination of a binary grating structure and a blazed grating structure includes cutting a substrate off-axis, depositing a first layer on the substrate, and depositing a resist layer on the first layer. The resist layer includes a pattern. The method also includes etching the first layer in the pattern using the resist layer as a mask. The pattern includes a first region and a second region. The method further includes creating the binary grating structure in the substrate in the second region and creating the blazed grating structure in the substrate in the first region.
    Type: Grant
    Filed: August 22, 2017
    Date of Patent: November 19, 2019
    Assignee: Magic Leap, Inc.
    Inventors: Christophe Peroz, Mauro Melli, Vikramjit Singh, David Jurbergs, Jeffrey Dean Schmulen, Zongxing Wang, Shuqiang Yang, Frank Y. Xu, Kang Luo, Marlon Edward Menezes, Michael Nevin Miller
  • Publication number: 20180059297
    Abstract: A method of manufacturing a waveguide having a combination of a binary grating structure and a blazed grating structure includes cutting a substrate off-axis, depositing a first layer on the substrate, and depositing a resist layer on the first layer. The resist layer includes a pattern. The method also includes etching the first layer in the pattern using the resist layer as a mask. The pattern includes a first region and a second region. The method further includes creating the binary grating structure in the substrate in the second region and creating the blazed grating structure in the substrate in the first region.
    Type: Application
    Filed: August 22, 2017
    Publication date: March 1, 2018
    Applicant: Magic Leap, Inc.
    Inventors: Christophe Peroz, Mauro Melli, Vikramjit Singh, David Jurbergs, Jeffrey Dean Schmulen, Zongxing Wang, Shuqiang Yang, Frank Y. Xu, Kang Luo, Marlon Edward Menezes, Michael Nevin Miller
  • Publication number: 20180052276
    Abstract: An eyepiece and waveguide for viewing a projected image in a virtual reality and augmented reality imaging and visualization system. The waveguide may include a substrate for guiding light. The waveguide may also include an incoupling diffractive element disposed within or on the substrate and configured to diffract an incoupled light related to the projected image into the substrate. The waveguide may further include a first grating disposed within or on the substrate and configured to manipulate the diffracted incoupled light from the incoupling diffractive element so as to multiply the projected image and to direct the multiplied projected image to a second grating. The second grating may be disposed within or on the substrate and may be configured to outcouple the manipulated diffracted incoupled light from the waveguide. The first grating and the second grating may occupy a same region of the waveguide.
    Type: Application
    Filed: August 22, 2017
    Publication date: February 22, 2018
    Applicant: Magic Leap, Inc.
    Inventors: Dave Klienman, Samarth Bhargava, Victor K. Liu, David Jurbergs
  • Publication number: 20150098066
    Abstract: A digital holographic apparatus, system, and method are disclosed. The apparatus includes an electronic display device comprising an interferometric spatial light modulator based display engine and a processor coupled to the electronic display device. The processor is operative to upload digital content to the electronic display device. The digital content is displayed on the electronic display device and is recorded into a holographic medium when the holographic medium and the electronic display device are flood exposed by a laser generated light beam. The system additionally includes at least one laser coupled optically coupled to the electronic display device and communicatively coupled to the processor. A method of recording a digital hologram in a holographic medium using the digital holographic system also is disclosed.
    Type: Application
    Filed: December 21, 2012
    Publication date: April 9, 2015
    Inventor: David Jurbergs
  • Patent number: 8945673
    Abstract: An apparatus for producing grafted Group IV nanoparticles is provided and includes a source of Group IV nanoparticles. A chamber is configured to carry the nanoparticles in a gas phase and has an inlet and an exit. The inlet configured to couple to an organic molecule source which is configured to provide organic molecules to the chamber. A plasma source is arranged to generate a plasma. The plasma causes the organic molecules to break down and/or activate in the chamber and bond to the nanoparticles. A method of producing grafted Group IV nanoparticles is also provided and includes receiving Group IV nanoparticles in a gas phase, creating a plasma with the nanoparticles, and allowing the organic molecules to break down and/or become activated in the plasma and bond with the nanoparticles.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: February 3, 2015
    Assignees: Regents of the University of Minnesota, Innovalight, Inc.
    Inventors: Lorenzo Mangolini, Uwe Kortshagen, Rebecca J. Anthony, David Jurbergs, Xuegeng Li, Elena Rogojina
  • Publication number: 20120094033
    Abstract: An apparatus for producing grafted Group IV nanoparticles is provided and includes a source of Group IV nanoparticles. A chamber is configured to carry the nanoparticles in a gas phase and has an inlet and an exit. The inlet configured to couple to an organic molecule source which is configured to provide organic molecules to the chamber. A plasma source is arranged to generate a plasma. The plasma causes the organic molecules to break down and/or activate in the chamber and bond to the nanoparticles. A method of producing grafted Group IV nanoparticles is also provided and includes receiving Group IV nanoparticles in a gas phase, creating a plasma with the nanoparticles, and allowing the organic molecules to break down and/or become activated in the plasma and bond with the nanoparticles.
    Type: Application
    Filed: December 20, 2011
    Publication date: April 19, 2012
    Inventors: Lorenzo Mangolini, Uwe Kortshagen, Rebecca J. Anthony, David Jurbergs, Xuegeng Li, Elena Rogojina
  • Patent number: 8016944
    Abstract: Methods and apparatus for producing nanoparticles, including single-crystal semiconductor nanoparticles, are provided. The methods include the step of generating a constricted radiofrequency plasma in the presence of a precursor gas containing precursor molecules to form nanoparticles. Single-crystal semiconductor nanoparticles, including photoluminescent silicon nanoparticles, having diameters of no more than 10 nm may be fabricated in accordance with the methods.
    Type: Grant
    Filed: November 3, 2008
    Date of Patent: September 13, 2011
    Assignee: Regents of the University of Minnesota
    Inventors: Uwe Kortshagen, Elijah J. Thimsen, Lorenzo Mangolini, Ameya Bapat, David Jurbergs
  • Publication number: 20110088759
    Abstract: Fullerene-capped Group IV nanoparticles, materials and devices made from the nanoparticles, and methods for making the nanoparticles are provided. The fullerene-capped Group IV nanoparticles have enhanced electron transporting properties and are well-suited for use in photovoltaic, electronics, and solid-state lighting applications.
    Type: Application
    Filed: December 22, 2010
    Publication date: April 21, 2011
    Inventors: Elena Rogojina, David Jurbergs
  • Publication number: 20110091731
    Abstract: Native Group IV semiconductor thin films formed from coating substrates using formulations of Group IV nanoparticles are described. Such native Group IV semiconductor thin films leverage the vast historical knowledge of Group IV semiconductor materials and at the same time exploit the advantages of Group IV semiconductor nanoparticles for producing novel thin films which may be readily integrated into a number of devices.
    Type: Application
    Filed: December 14, 2010
    Publication date: April 21, 2011
    Inventors: Maxim Kelman, Pingrong Yu, Manikandan Jayaraman, Dmitry Poplavskyy, David Jurbergs, Francesco Lemmi, Homer Antoniadis
  • Publication number: 20110079768
    Abstract: The present invention provides photoactive materials that include quantum-confined semiconductor nanostructures in combination with non-quantum confined and bulk semiconductor structures to enhance or create a type II band offset structure. The photoactive materials are well-suited for use as the photoactive layer in photoactive devices, including photovoltaic devices, photoconductors and photodetectors.
    Type: Application
    Filed: December 10, 2010
    Publication date: April 7, 2011
    Inventors: Dmytro Poplavskyy, Sanjai Sinha, David Jurbergs, Homer Antoniadis
  • Patent number: 7776724
    Abstract: A method of forming a densified nanoparticle thin film is disclosed. The method includes positioning a substrate in a first chamber; and depositing a nanoparticle ink, the nanoparticle ink including a set of Group IV semiconductor particles and a solvent. The method also includes heating the nanoparticle ink to a first temperature between about 30° C. and about 300° C., and for a first time period between about 1 minute and about 60 minutes, wherein the solvent is substantially removed, and a porous compact is formed; and positioning the substrate in a second chamber, the second chamber having a pressure of between about 1×10?7 Torr and about 1×10?4 Torr. The method further includes depositing on the porous compact a dielectric material; wherein the densified nanoparticle thin film is formed.
    Type: Grant
    Filed: December 4, 2007
    Date of Patent: August 17, 2010
    Assignee: Innovalight, Inc.
    Inventors: Francesco Lemmi, Elena V. Rogojina, Pingrong Yu, David Jurbergs, Homer Antoniadis, Maxim Kelman
  • Publication number: 20100139744
    Abstract: Fullerene-capped Group IV nanoparticles, materials and devices made from the nanoparticles, and methods for making the nanoparticles are provided. The fullerene-capped Group IV nanoparticles have enhanced electron transporting properties and are well-suited for use in photovoltaic, electronics, and solid-state lighting applications.
    Type: Application
    Filed: August 24, 2007
    Publication date: June 10, 2010
    Inventors: Elena Rogojina, David Jurbergs
  • Patent number: 7718707
    Abstract: A set of nanoparticles is disclosed. Each nanoparticle of the set of nanoparticles is comprised of a set of Group IV atoms arranged in a substantially spherical configuration. Each nanoparticle of the set of nanoparticles further having a sphericity of between about 1.0 and about 2.0; a diameter of between about 4 nm and about 100 nm; and a sintering temperature less than a melting temperature of the set of Group IV atoms.
    Type: Grant
    Filed: August 21, 2007
    Date of Patent: May 18, 2010
    Assignee: Innovalight, Inc.
    Inventors: Maxim Kelman, Xuegeng Li, Pingrong Yu, Karel Vanheusden, David Jurbergs
  • Patent number: 7521340
    Abstract: A method of forming a densified nanoparticle thin film in a chamber is disclosed. The method includes positioning a substrate in the chamber; and depositing a nanoparticle ink, the nanoparticle ink including a set of Group IV semiconductor particles and a solvent. The method also includes heating the nanoparticle ink to a first temperature between about 30° C. and about 300° C., and for a first time period between about 1 minute and about 60 minutes, wherein the solvent is substantially removed, and a porous compact is formed. The method further includes exposing the porous compact to an HF vapor for a second time period of between about 2 minutes and about 20 minutes, and heating the porous compact for a second temperature of between about 25° C. and about 60° C.; and heating the porous compact to a third temperature between about 100° C. and about 1000° C., and for a third time period of between about 5 minutes and about 10 hours; wherein the densified nanoparticle thin film is formed.
    Type: Grant
    Filed: December 4, 2007
    Date of Patent: April 21, 2009
    Assignee: Innovalight, Inc.
    Inventors: Francesco Lemmi, Elena V. Rogojina, Pingrong Yu, David Jurbergs, Homer Antoniadis, Maxim Kelman
  • Publication number: 20090056628
    Abstract: Methods and apparatus for producing nanoparticles, including single-crystal semiconductor nanoparticles, are provided. The methods include the step of generating a constricted radiofrequency plasma in the presence of a precursor gas containing precursor molecules to form nanoparticles. Single-crystal semiconductor nanoparticles, including photoluminescent silicon nanoparticles, having diameters of no more than 10 nm may be fabricated in accordance with the methods.
    Type: Application
    Filed: November 3, 2008
    Publication date: March 5, 2009
    Inventors: Uwe Kortshagen, Elijah J. Thimsen, Lorenzo Mangolini, Ameya Bapat, David Jurbergs
  • Publication number: 20090026421
    Abstract: An apparatus for making a set of Group IV nanoparticles is disclosed. The apparatus includes a top plate, the top plate further including an outlet port; a bottom plate; and a casing extending between the top plate and the bottom plate. The apparatus also includes a particle collector assembly configured to be in fluid communication with the outlet port; and a primary precursor tubing assembly passing through the bottom plate into the casing, the primary precursor tubing assembly including a primary precursor tubing assembly nozzle.
    Type: Application
    Filed: March 24, 2008
    Publication date: January 29, 2009
    Inventors: Xuegeng Li, David Jurbergs
  • Patent number: 7446335
    Abstract: Methods and apparatus for producing nanoparticles, including single-crystal semiconductor nanoparticles, are provided. The methods include the step of generating a constricted radiofrequency plasma in the presence of a precursor gas containing precursor molecules to form nanoparticles. Single-crystal semiconductor nanoparticles, including photoluminescent silicon nanoparticles, having diameters of no more than 10 nm may be fabricated in accordance with the methods.
    Type: Grant
    Filed: June 17, 2005
    Date of Patent: November 4, 2008
    Assignee: Regents of the University of Minnesota
    Inventors: Uwe Kortshagen, Elijah J. Thimsen, Lorenzo Mangolini, Ameya Bapat, David Jurbergs