Patents by Inventor David K. L. Peterson

David K. L. Peterson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200164214
    Abstract: An implantable stimulator includes a housing configured to be implanted beneath a skin surface of a patient and having a first surface adapted to face inwardly into tissue of the patient at or near a target tissue location; pulse generation circuitry located within the housing and electrically coupled to at least two electrodes, the pulse generation circuitry being adapted to deliver stimulation sessions by way of the at least two electrodes to the target tissue location, wherein each stimulation session included in the stimulation sessions has a duration of T3 minutes and a rate of occurrence of once every T4 minutes, wherein a ratio of T3 to T4 is no greater than 0.05; and a primary battery contained within the housing and electrically coupled to the pulse generation circuitry, the primary battery having an internal impedance greater than 5 ohms.
    Type: Application
    Filed: January 30, 2020
    Publication date: May 28, 2020
    Inventors: David K. L. Peterson, Jeffrey H. Greiner
  • Publication number: 20200121917
    Abstract: A method of treating hypertension in a patient includes generating, by an implantable stimulator configured to be implanted beneath a skin surface of the patient, stimulation sessions at a duty cycle that is less than 0.05 and applying, by the implantable stimulator in accordance with the duty cycle, the stimulation sessions to a tissue location associated with the hypertension. The duty cycle is a ratio of T3 to T4. Each stimulation session included in the stimulation sessions has a duration of T3 minutes and occurs at a rate of once every T4 minutes. The implantable stimulator is powered by a primary battery located within the implantable stimulator and having an internal impedance greater than 5 ohms.
    Type: Application
    Filed: November 22, 2019
    Publication date: April 23, 2020
    Inventors: Jeffrey H. Greiner, David K.L. Peterson, Chuladatta Thenuwara
  • Publication number: 20200121913
    Abstract: A method, programmer for a neurostimulator, and neurostimulation kit are provided. The kit comprises a neurostimulator, and a plurality of elongated lead bodies configured for being coupled to the neurostimulator, each having a plurality of proximal contacts and a plurality of distal electrodes respectively electrically coupled to the proximal contacts, wherein an in-line connectivity between the electrodes and proximal contacts carried by the different lead bodies differs from each other. Electrical energy is conveyed between the electrodes of the selected lead body and the tissue, an electrical fingerprint is measured at the proximal contacts of the selected lead body in response to the conveyed electrical energy, and the selected lead body is identified based on the measured electrical fingerprint. These steps can be performed by the programmer.
    Type: Application
    Filed: December 18, 2019
    Publication date: April 23, 2020
    Inventor: David K.L. Peterson
  • Patent number: 10576293
    Abstract: An implantable electroacupuncture device for treating a medical condition of a patient through application of electroacupuncture stimulation pulses to a target tissue location within the patient includes 1) a housing configured to be implanted beneath a skin surface of the patient, 2) pulse generation circuitry located within the housing and electrically coupled to at least two electrodes, the pulse generation circuitry being adapted to deliver stimulation sessions by way of the at least two electrodes to the target tissue location in accordance with a stimulation regimen, and 3) a primary battery contained within the housing and electrically coupled to the pulse generation circuitry, the primary battery having an internal impedance greater than 5 ohms and a capacity of less than 60 mAh, wherein the primary battery is the only battery that provides power to the pulse generation circuitry.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: March 3, 2020
    Assignee: Valencia Technologies Corporation
    Inventors: David K. L. Peterson, Jeffrey H. Greiner
  • Publication number: 20200061381
    Abstract: A method of treating osteoarthritis in a knee includes generating, by an implantable stimulator configured to be implanted beneath a skin surface of a patient, stimulation sessions at a duty cycle that is less than 0.05, and applying, by the implantable stimulator in accordance with the duty cycle, the stimulation sessions to a location that includes at least one of an acupoint labeled ST35, an acupoint labeled EX-LE-4, and a location on a line that intersects the acupoints labeled ST35 and EX-LE-4. The duty cycle is a ratio of T3 to T4. Each stimulation session included in the stimulation sessions has a duration of T3 minutes and occurs at a rate of once every T4 minutes. The implantable stimulator is powered by a primary battery located within the implantable stimulator and having an internal impedance greater than 5 ohms.
    Type: Application
    Filed: October 29, 2019
    Publication date: February 27, 2020
    Inventors: Jeffrey H. Greiner, David K. L. Peterson, Stacy Greiner Chambliss
  • Patent number: 10549085
    Abstract: A method, programmer for a neurostimulator, and neurostimulation kit are provided. The kit comprises a neurostimulator, and a plurality of elongated lead bodies configured for being coupled to the neurostimulator, each having a plurality of proximal contacts and a plurality of distal electrodes respectively electrically coupled to the proximal contacts, wherein an in-line connectivity between the electrodes and proximal contacts carried by the different lead bodies differs from each other. Electrical energy is conveyed between the electrodes of the selected lead body and the tissue, an electrical fingerprint is measured at the proximal contacts of the selected lead body in response to the conveyed electrical energy, and the selected lead body is identified based on the measured electrical fingerprint. These steps can be performed by the programmer.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: February 4, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: David K. L. Peterson
  • Patent number: 10543362
    Abstract: A method and system of providing therapy to a patient using electrodes implanted adjacent tissue. The method comprises regulating a first voltage at an anode of the electrodes relative to the tissue, regulating a second voltage at a cathode of the electrodes relative to the tissue, and conveying electrical stimulation energy between the anode at the first voltage and the cathode at the second voltage, thereby stimulating the neural tissue. The system comprises a grounding electrode configured for being placed in contact with the tissue, electrical terminals configured for being respectively coupled to the electrodes, a first regulator configured for being electrically coupled between an anode of the electrodes and the grounding electrode, a second regulator configured for being electrically coupled between an anode of the electrodes and the grounding electrode, and control circuitry configured for controlling the regulators to convey electrical stimulation energy between the anode and cathode.
    Type: Grant
    Filed: April 11, 2017
    Date of Patent: January 28, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: David K. L. Peterson
  • Publication number: 20200023188
    Abstract: Tissue stimulation systems generally include a pulse generating device for generating electrical stimulation pulses, at least one implanted electrode for delivering the electrical stimulation pulses generated by the pulse generating device, and a programmer capable of communicating with the pulse generating device. Stimulation pulses may be defined by several parameters, such as pulse width and amplitude. In methods of stimulating the tissue with the stimulation system, a user may adjust one of the parameters such as pulse width. The programmer may automatically adjust the pulse amplitude in response to the change in pulse width in order to maintain a substantially constant effect of the stimulation pulses.
    Type: Application
    Filed: September 30, 2019
    Publication date: January 23, 2020
    Inventors: James R. Thacker, Harold Haut, Robert Nathan, David K.L. Peterson, Kerry Bradley
  • Patent number: 10518082
    Abstract: An electroacupuncture device for treating hypertension in a patient includes 1) a housing configured to be implanted beneath a skin surface of the patient at an acupoint corresponding to a target tissue location within the patient, the acupoint comprising at least one of PC5, PC6, ST36, and ST37, 2) a central electrode of a first polarity and centrally located and substantially planar on a first surface of the housing, 3) an annular electrode of a second polarity and that surrounds the central electrode on the first surface of the housing, the annular electrode being spaced apart from the central electrode, and 4) pulse generation circuitry located within the housing and electrically coupled to the annular and central electrodes.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: December 31, 2019
    Assignee: Valencia Technologies Corporation
    Inventors: Jeffrey H. Greiner, David K. L. Peterson, Chuladatta Thenuwara
  • Patent number: 10518089
    Abstract: A method of providing therapy to a patient using a plurality of electrodes is provided. The electrodes are located adjacent a target neural tissue region having a first nerve fiber of a relatively small diameter and a second nerve fiber of a relatively large diameter. The method comprises sourcing electrical current from a local anode into the target neural tissue region. The method further comprises therapeutically sinking a first portion of the electrical current from the target neural tissue region into a local cathode. The method further comprises sinking a second portion of the electrical current into a cathode remote from the target neural tissue region. The ratio of the sourced electrical current over the first sunk electrical current portion has a value that allows the first nerve fiber to be recruited by the electrical current while preventing the second nerve fiber from being recruited by the electrical current.
    Type: Grant
    Filed: April 18, 2017
    Date of Patent: December 31, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Dongchul Lee, Kerry Bradley, David K. L. Peterson
  • Patent number: 10485975
    Abstract: An exemplary electroacupuncture device may be implanted beneath a skin surface of a patient at a location corresponding to a joint affected by osteoarthritis and may perform methods for treating the osteoarthritis. In some implementations, the electroacupuncture device is powered by a primary battery located within the electroacupuncture device and having an internal impedance greater than 5 ohms and a capacity of less than 60 milliamp-hours (mAh).
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: November 26, 2019
    Assignee: Valencia Technologies Corporation
    Inventors: Jeffrey H. Greiner, David K. L. Peterson, Stacy Greiner Chambliss
  • Patent number: 10456585
    Abstract: Tissue stimulation systems generally include a pulse generating device for generating electrical stimulation pulses, at least one implanted electrode for delivering the electrical stimulation pulses generated by the pulse generating device, and a programmer capable of communicating with the pulse generating device. Stimulation pulses may be defined by several parameters, such as pulse width and amplitude. In methods of stimulating the tissue with the stimulation system, a user may adjust one of the parameters such as pulse width. The programmer may automatically adjust the pulse amplitude in response to the change in pulse width in order to maintain a substantially constant effect of the stimulation pulses.
    Type: Grant
    Filed: March 22, 2018
    Date of Patent: October 29, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: James R. Thacker, Harold Haut, Robert Nathan, David K. L. Peterson, Kerry Bradley
  • Publication number: 20190290541
    Abstract: A method of treating a mental disorder of a patient includes generating, by an implantable stimulator configured to be implanted beneath a skin surface of the patient, stimulation sessions at a duty cycle that is less than 0.05 and applying, by the implantable stimulator in accordance with the duty cycle, the stimulation sessions to a tissue location associated with the mental disorder. The duty cycle is a ratio of T3 to T4. Each stimulation session included in the stimulation sessions has a duration of T3 minutes and occurs at a rate of once every T4 minutes. The implantable stimulator is powered by a primary battery located within the implantable stimulator and having an internal impedance greater than 5 ohms.
    Type: Application
    Filed: April 23, 2019
    Publication date: September 26, 2019
    Inventors: Jeffrey H. Greiner, David K. L. Peterson, Chuladatta Thenuwara, Stacy O. Greiner
  • Publication number: 20190247274
    Abstract: A method of treating cardiovascular disease in a patient includes generating, by an implantable stimulator configured to be implanted beneath a skin surface of the patient, stimulation sessions at a duty cycle that is less than 0.05 and applying, by the implantable stimulator in accordance with the duty cycle, the stimulation sessions to a tissue location associated with the cardiovascular disease. The duty cycle is a ratio of T3 to T4. Each stimulation session included in the stimulation sessions has a duration of T3 minutes and occurs at a rate of once every T4 minutes. The implantable stimulator is powered by a primary battery located within the implantable stimulator and having an internal impedance greater than 5 ohms.
    Type: Application
    Filed: April 25, 2019
    Publication date: August 15, 2019
    Inventors: Jeffrey H. Greiner, David K. L. Peterson, Chuladatta Thenuwara
  • Publication number: 20190247275
    Abstract: A method comprises generating, by an implantable stimulator, stimulation sessions at a duty cycle that is less than 0.05 and applying, by the implantable stimulator in accordance with the duty cycle, the stimulation sessions to a patient. The duty cycle is a ratio of T3 to T4. Each stimulation session included in the stimulation sessions has a duration of T3 minutes and occurs at a rate of once every T4 minutes. The implantable stimulator is powered by a primary battery located within the implantable stimulator and having an internal impedance greater than 5 ohms.
    Type: Application
    Filed: April 25, 2019
    Publication date: August 15, 2019
    Inventors: Jeffrey H. Greiner, David K. L. Peterson, Chuladatta Thenuwara, Stacy O. Greiner
  • Patent number: 10307331
    Abstract: A method of treating a mental disorder of a patient includes 1) generating, by an electroacupuncture device implanted beneath a skin surface of the patient at or near an acupoint corresponding to at least one of a trigeminal nerve and an occipital nerve of the patient, stimulation sessions at a duty cycle that is less than 0.05, and 2) applying, by the electroacupuncture device, the stimulation sessions to at least one of the trigeminal nerve and the occipital nerve by way a central electrode and an annular electrode located on the electroacupuncture device in accordance with the duty cycle.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: June 4, 2019
    Assignee: Valencia Technologies Corporation
    Inventors: Jeffrey H. Greiner, David K. L. Peterson, Chuladatta Thenuwara, Stacy Greiner Chambliss
  • Patent number: 10299986
    Abstract: An exemplary method treating a cardiovascular disease in a patient includes 1) generating, by an electroacupuncture device implanted beneath a skin surface of the patient, stimulation sessions at a duty cycle that is less than 0.05, and 2) applying, by the electroacupuncture device in accordance with the duty cycle, the stimulation sessions to a median nerve of the patient by way of an electrode array located within the patient at an acupoint corresponding to the median nerve.
    Type: Grant
    Filed: January 31, 2017
    Date of Patent: May 28, 2019
    Assignee: Valencia Technologies Corporation
    Inventors: Jeffrey H. Greiner, David K. L. Peterson, Chuladatta Thenuwara
  • Patent number: 10299987
    Abstract: An exemplary method includes generating, by an electroacupuncture device implanted beneath a skin surface of a patient, stimulation sessions at a duty cycle that is less than 0.05, and applying, by the electroacupuncture device in accordance with the duty cycle, the stimulation sessions to a location within the patient. A primary battery located within the electroacupuncture device and having an internal impedance greater than 5 ohms is configured to provide operating power to pulse generation circuitry within the electroacupuncture device.
    Type: Grant
    Filed: March 12, 2018
    Date of Patent: May 28, 2019
    Assignee: Valencia Technologies Corporation
    Inventors: Jeffrey H. Greiner, David K. L. Peterson, Chuladatta Thenuwara, Stacy O. Greiner
  • Publication number: 20190030344
    Abstract: Circuitry useable to protect and reliably charge a rechargeable battery, even from a zero-volt state, is disclosed, and is particularly useful when employed in an implantable medical device. The circuit includes two charging paths, a first path for trickle charging the battery, and a second path for charging the battery at relatively higher currents. A passive diode is used in the first trickle-charging path which allows trickle charging even when the battery voltage is too low for reliable gating, while a gateable switch (preferably a PMOS transistor) is used in the second higher-current charging path when the voltage is higher and the switch can therefore be gated more reliably. A second diode between the two paths ensures no leakage to the substrate through the gateable switch during trickle charging. The load couples to the battery through the switch, and preferably through a second switch specifically used for decoupling the load.
    Type: Application
    Filed: October 1, 2018
    Publication date: January 31, 2019
    Inventors: Yuping He, David K. L. Peterson
  • Publication number: 20180333570
    Abstract: A method, programmer for a neurostimulator, and neurostimulation kit are provided. The kit comprises a neurostimulator, and a plurality of elongated lead bodies configured for being coupled to the neurostimulator, each having a plurality of proximal contacts and a plurality of distal electrodes respectively electrically coupled to the proximal contacts, wherein an in-line connectivity between the electrodes and proximal contacts carried by the different lead bodies differs from each other. Electrical energy is conveyed between the electrodes of the selected lead body and the tissue, an electrical fingerprint is measured at the proximal contacts of the selected lead body in response to the conveyed electrical energy, and the selected lead body is identified based on the measured electrical fingerprint. These steps can be performed by the programmer.
    Type: Application
    Filed: July 31, 2018
    Publication date: November 22, 2018
    Inventor: David K.L. Peterson