Patents by Inventor David K. Nakamoto

David K. Nakamoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7261982
    Abstract: The present application relates to a method of fabricating planar circuits using a photo lithographic mask set, to the photo lithographic mask set, and to a planar circuit fabricated with the photo lithographic mask set. The instant invention involves separating a photo lithographic mask into two parts, namely, a master mask and one or more slave masks. The master mask and the one or more slave masks form a photo lithographic mask set that is used iteratively to fabricate the planar circuits. In particular, the master mask is used as a template to provide the general layout for the planar circuit, while each slave mask is varied to tune and/or tailor the planar circuit. Since only a small portion of the planar circuit is redesigned and/or rewritten as a new mask (i.e., the slave mask), the instant invention provides a simple and cost effective method for optimizing planar circuits.
    Type: Grant
    Filed: December 15, 2003
    Date of Patent: August 28, 2007
    Assignee: JDS Uniphase Corporation
    Inventors: Barthelemy Fondeur, Anca L. Sala, Robert J. Brainard, David K. Nakamoto, Tom Truong, Sanjay M. Thekdi, Anantharaman Vaidyanathan
  • Patent number: 6947653
    Abstract: A planar lightwave circuit includes at least one optical waveguide core, and at least one feature proximate the core having a stress-engineered property to balance stress and therefore minimize birefringence affecting the core. A protective passivation layer is formed over the core and the feature to be substantially non-interfering with the balanced stress provided by the feature. The stress balancing feature may be an overcladding layer formed over the core, doped to have a coefficient of thermal expansion approximately matched to that of an underlying substrate, to symmetrically distribute stress in an undercladding between the overcladding and the substrate, away from the core. The protective passivation layer is formed to have a coefficient of thermal expansion approximately matched to that of the overcladding. In one exemplary embodiment, the passivation layer is formed from silicon nitride. Related concepts of stress release grooves, and core overetching, are also disclosed.
    Type: Grant
    Filed: October 12, 2001
    Date of Patent: September 20, 2005
    Assignee: JDS Uniphase Corporation
    Inventors: Jyoti Kiron Bhardwaj, Robert James Brainard, Zi-Wen Dong, David Dougherty, Erik W. Egan, Niranjan Gopinathan, David K. Nakamoto, Thomas Thuan Nguyen, Sanjay M. Thekdi, Anantharaman Vaidyanathan, Hiroaki Yamada, Yingchao Yan
  • Patent number: 6697553
    Abstract: A planar lightwave circuit includes an arrayed waveguide grating (AWG), with input and output waveguides, partially curved array waveguides with respective length differences, and planar waveguide regions for focusing optical energy between the input/output and array waveguides. Optimal waveguide widths and spacing along the planar waveguide region facets are disclosed, which are largely determinative of AWG size and optical performance. Also disclosed are optimal cross-sectional waveguide dimensions (e.g., width and height); modified index of refraction difference between the waveguide core and cladding regions; and optimal array waveguide lengths, path length differences, and free spectral range. These features, especially when combined with advanced fiber attachment, passivation and packaging techniques, result in high-yield, high-performance AWGs (both gaussian and flattop versions).
    Type: Grant
    Filed: February 15, 2002
    Date of Patent: February 24, 2004
    Assignee: JDS Uniphase Corporation
    Inventors: Jyoti Kiron Bhardwaj, Robert James Brainard, David J. Chapman, Douglas E. Crafts, Zi-Wen Dong, David Dougherty, Erik W. Egan, James F. Farrell, Mark B. Farrelly, Niranjan Gopinathan, Kenzo Ishida, David K. Nakamoto, Thomas Thuan Nguyen, Suresh Ramalingam, Steven M. Swain, Sanjay M. Thekdi, Anantharaman Vaidyanathan, Hiroaki Yamada, Yingchao Yan
  • Publication number: 20030156789
    Abstract: A planar lightwave circuit includes an arrayed waveguide grating (AWG), with input and output waveguides, partially curved array waveguides with respective length differences, and planar waveguide regions for focusing optical energy between the input/output and array waveguides. Optimal waveguide widths and spacing along the planar waveguide region facets are disclosed, which are largely determinative of AWG size and optical performance. Also disclosed are optimal cross-sectional waveguide dimensions (e.g., width and height); modified index of refraction difference between the waveguide core and cladding regions; and optimal array waveguide lengths, path length differences, and free spectral range. These features, especially when combined with advanced fiber attachment, passivation and packaging techniques, result in high-yield, high-performance AWGs (both gaussian and flattop versions).
    Type: Application
    Filed: February 15, 2002
    Publication date: August 21, 2003
    Inventors: Jyoti Kiron Bhardwaj, Robert James Brainard, David J. Chapman, Douglas E. Crafts, Zi-Wen Dong, David Dougherty, Erik W. Egan, James F. Farrell, Mark B. Farrelly, Niranjan Gopinathan, Kenzo Ishida, David K. Nakamoto, Thomas Thuan Nguyen, Suresh Ramalingam, Steven M. Swain, Sanjay M. Thekdi, Anantharaman Vaidyanathan, Hiroaki Yamada, Yingchao Yan
  • Publication number: 20030072548
    Abstract: A planar lightwave circuit includes at least one optical waveguide core, and at least one feature proximate the core having a stress-engineered property to balance stress and therefore minimize birefringence affecting the core. A protective passivation layer is formed over the core and the feature to be substantially non-interfering with the balanced stress provided by the feature. The stress balancing feature may be an overcladding layer formed over the core, doped to have a coefficient of thermal expansion approximately matched to that of an underlying substrate, to symmetrically distribute stress in an undercladding between the overcladding and the substrate, away from the core. The protective passivation layer is formed to have a coefficient of thermal expansion approximately matched to that of the overcladding. In one exemplary embodiment, the passivation layer is formed from silicon nitride. Related concepts of stress release grooves, and core overetching, are also disclosed.
    Type: Application
    Filed: October 12, 2001
    Publication date: April 17, 2003
    Applicant: Scion Photonics, Inc.
    Inventors: Jyoti Kiron Bhardwaj, Robert James Brainard, Zi-Wen Dong, David Dougherty, Erik W. Egan, Niranjan Gopinathan, David K. Nakamoto, Thomas Thuan Nguyen, Sanjay M. Thekdi, Anantharaman Vaidyanathan, Hiroaki Yamada, Yingchao Yan