Patents by Inventor David K. Peterson

David K. Peterson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220249852
    Abstract: An implantable medical device is described. The implantable medical device includes an enclosure for receiving and hermitically sealing active components. A header is connected to the enclosure and encloses other components of the device. A communications antenna is encapsulated in a bio-compatible material and connected to an exterior surface of the enclosure. The communications antenna is electrically connected to the active components via an access window of the header. The access window is backfilled after the connections are made.
    Type: Application
    Filed: July 13, 2020
    Publication date: August 11, 2022
    Applicant: Verily Life Sciences LLC
    Inventors: Alexander LOO, Peng CONG, David K. Peterson
  • Publication number: 20210402191
    Abstract: An implantable pulse generator is provided that includes a power source, a wireless communication component configured to facilitate wireless communication with a non-implanted device and pulse-generating circuitry connected to the power source. The pulse-generating circuitry can be configured to identify, based on wireless communication with the non-implanted device, temporal and amplitude characteristics for electrical pulse stimuli and to trigger electrical output stimuli having the temporal and amplitude characteristics. The implantable pulse generation can further include one or more lead connections—each being shaped to engage a lead and electrically connected to the pulse-generating circuitry to enable the lead to deliver at least part of the electrical output stimuli triggered by the pulse-generating circuitry. The implantable pulse generator can further include one or more suture-engagement components, each including one or more holes each having a diameter that is at least 0.1 mm and less than 5 mm.
    Type: Application
    Filed: September 23, 2019
    Publication date: December 30, 2021
    Inventors: Alexander Loo, Peng Cong, David K. Peterson
  • Patent number: 9687653
    Abstract: A programming system for selecting an electrode configuration for use in a medical electrical stimulator coupled to an electrode array. A programmer is configured for providing a set of electrode configurations for the electrode array, automatically testing a first portion of the set of electrode configurations in a first order, allowing the selection of one or more of the tested electrode configurations, determining whether a suitable number of electrode configurations from among the first portion have been selected within a predefined interval, and automatically testing a second portion of the set of electrode configurations in a second order if the suitable number of electrode configurations from among the first portion are not selected within the predefined interval. The programmer may further allow the selection of the tested electrode configurations, and adjusting parameters during the testing, wherein the adjusting is controllably shared in parallel between a clinician and a patient.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: June 27, 2017
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Carla M. Woods, James R. Thacker, David K. Peterson, Holly A. Segel, Susan E. Ford, Margaret E. Theriot, Kerry Bradley
  • Patent number: 9174051
    Abstract: Circuitry for generating a compliance voltage (V+) for the current sources and/or sinks in an implantable stimulator device is disclosed. The improved compliance voltage generation circuitry adjusts V+ to an optimal value in real time, even during the provision of a stimulation current. The circuitry uses amplifiers to measure the voltage drop across an active PDACs (current sources) and/or NDAC (current sinks) The measured voltages are input to a V+ regulator, which compares the measured voltage drops across the DACs to optimal values, and which feeds an optimized value for V+ back to the DACs in real time to keep the voltage drop(s) at those optimal levels during the stimulation current for efficient DAC operation.
    Type: Grant
    Filed: March 21, 2013
    Date of Patent: November 3, 2015
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Goran N. Marnfeldt, David K. Peterson, Jordi Parramon
  • Publication number: 20130289665
    Abstract: Circuitry for generating a compliance voltage (V+) for the current sources and/or sinks in an implantable stimulator device is disclosed. The improved compliance voltage generation circuitry adjusts V+ to an optimal value in real time, even during the provision of a stimulation current. The circuitry uses amplifiers to measure the voltage drop across an active PDACs (current sources) and/or NDAC (current sinks) The measured voltages are input to a V+ regulator, which compares the measured voltage drops across the DACs to optimal values, and which feeds an optimized value for V+ back to the DACs in real time to keep the voltage drop(s) at those optimal levels during the stimulation current for efficient DAC operation.
    Type: Application
    Filed: March 21, 2013
    Publication date: October 31, 2013
    Applicant: Boston Scientific Neuromodulation Corporation
    Inventors: Goran N. Marnfeldt, David K. Peterson, Jordi Parramon
  • Publication number: 20130006325
    Abstract: A programming system for selecting an electrode configuration for use in a medical electrical stimulator coupled to an electrode array. A programmer is configured for providing a set of electrode configurations for the electrode array, automatically testing a first portion of the set of electrode configurations in a first order, allowing the selection of one or more of the tested electrode configurations, determining whether a suitable number of electrode configurations from among the first portion have been selected within a predefined interval, and automatically testing a second portion of the set of electrode configurations in a second order if the suitable number of electrode configurations from among the first portion are not selected within the predefined interval. The programmer may further allow the selection of the tested electrode configurations, and adjusting parameters during the testing, wherein the adjusting is controllably shared in parallel between a clinician and a patient.
    Type: Application
    Filed: June 29, 2012
    Publication date: January 3, 2013
    Applicant: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Carla M. Woods, James R. Thacker, David K. Peterson, Holly A. Segel, Susan E. Ford, Margaret E. Theriot, Kerry Bradley
  • Patent number: 8233991
    Abstract: Methods for selecting Spinal Cord Stimulation (SCS), or other medical electrical stimulator, electrode configurations from a set of electrode configurations are provided. Each electrode configuration represents a polarity or a polarity percentage of the electrodes of an electrode array. The selected electrode configurations may be used in a medical electrical stimulator. Such methods of selecting electrode configurations results in a more efficient programming and use of the stimulation system.
    Type: Grant
    Filed: April 13, 2005
    Date of Patent: July 31, 2012
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Carla M. Woods, James R. Thacker, David K. Peterson, Holly A. Segel, Susan E. Ford, Margaret E. Theriot, Kerry Bradley
  • Patent number: 7769462
    Abstract: A spinal cord stimulation (SCS) system includes multiple electrodes, multiple, independently programmable, stimulation channels within an implantable pulse generator (IPG) which channels can provide concurrent, but unique stimulation fields, permitting virtual electrodes to be realized. The SCS system includes a replenishable power source (e.g., rechargeable battery), that may be recharged using transcutaneous power transmissions between antenna coil pairs. An external charger unit, having its own rechargeable battery can be used to charge the IPG replenishable power source. A real-time clock can provide an auto-run schedule for daily stimulation. An included bi-directional telemetry link in the system informs the patient or clinician the status of the system, including the state of charge of the IPG battery. Other processing circuitry in the IPG allows electrode impedance measurements to be made. Further circuitry in the external battery charger can provide alignment detection for the coil pairs.
    Type: Grant
    Filed: January 20, 2007
    Date of Patent: August 3, 2010
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Paul M. Meadows, Carla Mann Woods, David K. Peterson, Joey Chen, David H. Payne
  • Publication number: 20090062883
    Abstract: A spinal cord stimulation (SCS) system includes multiple electrodes, multiple, independently programmable, stimulation channels within an implantable pulse generator (IPG) which channels can provide concurrent, but unique stimulation fields, permitting virtual electrodes to be realized. The SCS system includes a replenishable power source (e.g., rechargeable battery), that may be recharged using transcutaneous power transmissions between antenna coil pairs. An external charger unit, having its own rechargeable battery can be used to charge the IPG replenishable power source. A real-time clock can provide an auto-run schedule for daily stimulation. An included bi-directional telemetry link in the system informs the patient or clinician the status of the system, including the state of charge of the IPG battery. Other processing circuitry in the IPG allows electrode impedance measurements to be made. Further circuitry in the external battery charger can provide alignment detection for the coil pairs.
    Type: Application
    Filed: November 29, 2007
    Publication date: March 5, 2009
    Applicant: ADVANCED BIONICS CORPORATION
    Inventors: Paul M. Meadows, Carla Mann Woods, David K. Peterson, Joey Chen, David H. Payne
  • Patent number: 7496404
    Abstract: A spinal cord stimulation (SCS) system includes multiple electrodes, multiple, independently programmable, stimulation channels within an implantable pulse generator (IPG) which channels can provide concurrent, but unique stimulation fields, permitting virtual electrodes to be realized. The SCS system includes a replenishable power source (e.g., rechargeable battery), that may be recharged using transcutaneous power transmissions between antenna coil pairs. An external charger unit, having its own rechargeable battery can be used to charge the IPG replenishable power source. A real-time clock can provide an auto-run schedule for daily stimulation. An included bi-directional telemetry link in the system informs the patient or clinician the status of the system, including the state of charge of the IPG battery. Other processing circuitry in the IPG allows electrode impedance measurements to be made. Further circuitry in the external battery charger can provide alignment detection for the coil pairs.
    Type: Grant
    Filed: December 10, 2004
    Date of Patent: February 24, 2009
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Paul M Meadows, Carla M Woods, David K Peterson, Joey Chen, David H Payne
  • Patent number: 6895280
    Abstract: A spinal cord stimulation (SCS) system includes multiple electrodes, multiple, independently programmable, stimulation channels within an implantable pulse generator (IPG) which channels can provide concurrent, but unique stimulation fields, permitting virtual electrodes to be realized. The SCS system includes a replenishable power source (e.g., rechargeable battery), that may be recharged using transcutaneous power transmissions between antenna coil pairs. An external charger unit, having its own rechargeable battery can be used to charge the IPG replenishable power source. A real-time clock can provide an auto-run schedule for daily stimulation. An included bi-directional telemetry link in the system informs the patient or clinician the status of the system, including the state of charge of the IPG battery. Other processing circuitry in the IPG allows electrode impedance measurements to be made. Further circuitry in the external battery charger can provide alignment detection for the coil pairs.
    Type: Grant
    Filed: November 27, 2002
    Date of Patent: May 17, 2005
    Assignee: Advanced Bionics Corporation
    Inventors: Paul M. Meadows, Carla Mann Woods, David K. Peterson, Joey Chen, David H. Payne
  • Publication number: 20030120323
    Abstract: A spinal cord stimulation (SCS) system includes multiple electrodes, multiple, independently programmable, stimulation channels within an implantable pulse generator (IPG) which channels can provide concurrent, but unique stimulation fields, permitting virtual electrodes to be realized. The SCS system includes a replenishable power source (e.g., rechargeable battery), that may be recharged using transcutaneous power transmissions between antenna coil pairs. An external charger unit, having its own rechargeable battery can be used to charge the IPG replenishable power source. A real-time clock can provide an auto-run schedule for daily stimulation. An included bi-directional telemetry link in the system informs the patient or clinician the status of the system, including the state of charge of the IPG battery. Other processing circuitry in the IPG allows electrode impedance measurements to be made. Further circuitry in the external battery charger can provide alignment detection for the coil pairs.
    Type: Application
    Filed: November 27, 2002
    Publication date: June 26, 2003
    Inventors: Paul M. Meadows, Carla Mann Woods, David K. Peterson, Joey Chen, David H. Payne
  • Patent number: 5893882
    Abstract: A pacemaker provided with a mode switching feature adapted to stabilize ventricular heart rate during atrial fibrillation. In a preferred embodiment of the invention, the device nominally operates in an atrial synchronized pacing mode such as DDD, DDDR, VDD or VDDR. In response to detection of atrial rhythm characteristics consistent with atrial fibrillation, the device switches into a non-atrial synchronized, ventricular rate stabilization pacing mode with the base ventricular pacing rate modulated on a beat by beat basis based upon preceding intrinsic or paced ventricular heartbeat intervals to adjust the pacing interval towards a desired preset rate stabilization target pacing interval which is typically less than the programmed base pacing interval of the device.
    Type: Grant
    Filed: December 17, 1996
    Date of Patent: April 13, 1999
    Assignee: Medtronic, Inc.
    Inventors: David K. Peterson, Thomas L. Jirak, Ren Zhou, Michael R. S. Hill
  • Patent number: 5846263
    Abstract: An implantable pacemaker employing an arrhythmia prevention pacing modality particularly optimized for inclusion in dual chamber pacemakers and anti-arrhythmia devices which include dual chamber pacemakers. When the pacing mode is in effect, the device alters timing of scheduled atrial and/or ventricular pacing pulses in response to depolarizations sensed during the refractory periods and to ventricular depolarizations sensed outside of the pacemaker's A-V escape intervals. The arrhythmia prevention pacing mode is activated and deactivated in conjunction with the operation of arrhythmia detection features which may also be employed by the device to trigger delivery of anti-arrhythmia therapies.
    Type: Grant
    Filed: December 13, 1996
    Date of Patent: December 8, 1998
    Assignee: Medtronic, Inc.
    Inventors: David K. Peterson, Michael R. S. Hill, Ren Zhou, Kathleen A. Prieve
  • Patent number: 5697952
    Abstract: A cardiac assist device having muscle augmentation after a confirmed arrhythmia. In particular the present invention operates, in a first embodiment, to sense a cardiac event, next it determines whether the cardiac event is a cardiac arrhythmia, if the event is not a cardiac arrhythmia the devices delivers stimulation to a skeletal muscle grafted about a heart, but if the event is a cardiac arrhythmia the device inhibits delivery of skeletal muscle stimulation and once the arrhythmia is confirmed, then delivers therapeutic stimulation to the heart. In a second embodiment the present invention operates to re-initiate skeletal muscle stimulation once the arrhythmia is confirmed but prior to the delivery of the therapeutic stimulation to the heart.
    Type: Grant
    Filed: August 17, 1995
    Date of Patent: December 16, 1997
    Assignee: Medtronic, Inc.
    Inventors: David Francischelli, John Hammargren, Johann J. Neisz, David K. Peterson, Koen J. Weijand
  • Patent number: 5607385
    Abstract: A device and algorithm for a combined cardiomyostimulator and a cardiac pacer-cardioverter-defibrillator.
    Type: Grant
    Filed: August 17, 1995
    Date of Patent: March 4, 1997
    Assignee: Medtronic, Inc.
    Inventors: David Francischelli, Kendra K. Gealow, Pierre A. Grandjean, John Hammargren, Johann J. Neisz, David K. Peterson
  • Patent number: 5447519
    Abstract: An implantable cardioverter/defibrillator system provided with method and apparatus for discrimination between monomorphic arrhythmias, e.g. ventricular tachycardia from polymorphic arrhythmias, e.g. ventricular fibrillation. A fiducial point of each successive QRS complex is detected prompting the storage of sampled and digitized waveform data within a timing window bridging the point in time of fiducial point detection. Stored sets of such sampled wave shape data are compared data point to data point resulting in a sampled morphology index value for each compared set. The magnitude of the sampled morphology index value or a series such index values are analyzed to determine the presence of a single or a progression of beat-to-beat waveform changes indicative of a polymorphic single transition or progression of QRS complexes from monomorphic to polymorphic waveforms indicative of an arrhythmia that should be treated with aggressive cardioversion/defibrillation therapies.
    Type: Grant
    Filed: March 19, 1994
    Date of Patent: September 5, 1995
    Assignee: Medtronic, Inc.
    Inventor: David K. Peterson
  • Patent number: 5344430
    Abstract: An implantable defibrillator provided with a plurality of defibrillation electrodes, which may be reconfigured to define a plurality of defibrillation pathways. The device is capable of measuring the impedance along a selected defibrillation pathway, during delivery of an impedance pulse, and monitoring the success or failure of the pulse to accomplish defibrillation or cardioversion. In response to a detected failure to accomplish cardioversion in conjunction with a measured change of impedance of greater than a predetermined amount, a new defibrillation pathway is selected, which may employ some or all of the electrodes employed to define the original impedance pathway. The device also includes apparatus for varying the relative amplitude of defibrillation pulses applied to individual electrodes used in sequential or simultaneous, multiple electrode pulse regimens, in order to equalize current distribution, in response to measured pathway impedances.
    Type: Grant
    Filed: April 8, 1993
    Date of Patent: September 6, 1994
    Assignee: Medtronic, Inc.
    Inventors: Gary L. Berg, Martin A. Rossing, David K. Peterson, Robert A. Neumann
  • Patent number: 5342402
    Abstract: An apparatus for detecting, identifying and treating tachyarrhythmias. Tachyarrhythmias are detected and identified by the use of overlapping ranges of intervals. Provisional identification of tachyarrhythmia is accomplished by measuring and tracking intervals within two overlapping or adjacent interval ranges. Further classification and identification of tachyarrhythmias is accomplished by determining the relative numbers of intervals within a preceding series falling within a third interval range, overlapping one or both of the interval ranges. In response to identification of the tachyarrhythmia, an appropriate therapy is selected and delivered.
    Type: Grant
    Filed: January 29, 1993
    Date of Patent: August 30, 1994
    Assignee: Medtronic, Inc.
    Inventors: Walter H. Olson, David K. Peterson
  • Patent number: 5257621
    Abstract: An implantable cardioverter/defibrillator provided with method and apparatus for discrimination between ventricular tachycardia and ventricular fibrillation. The device is provided with two pairs of electrodes, each pair of electrodes coupled to processing circuitry for identifying a predetermined fiducal point in the electrical signal associated with a ventricular depolarization. The cumulative beat to beat variability of the intervals separating the two identified fiducal points, over a series of detected depolarizations is analyzed. The result of this analysis is used to distinguish between ventricular tachycardia and ventricular fibrillation.
    Type: Grant
    Filed: January 29, 1993
    Date of Patent: November 2, 1993
    Assignee: Medtronic, Inc.
    Inventors: Gust H. Bardy, Walter H. Olson, David K. Peterson, Robert T. Taepke