Patents by Inventor David K. Pierce

David K. Pierce has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210392899
    Abstract: This invention relates generally to novel methods and novel devices for the continuous manufacture of nanoparticles, microparticles and nanoparticle/liquid solution(s). The nanoparticles (and/or micron-sized particles) comprise a variety of possible compositions, sizes and shapes. The particles (e.g., nanoparticles) are caused to be present (e.g., created) in a liquid (e.g., water) by, for example, preferably utilizing at least one adjustable plasma (e.g., created by at least one AC and/or DC power source), which plasma communicates with at least a portion of a surface of the liquid. At least one subsequent and/or substantially simultaneous adjustable electrochemical processing technique is also preferred. Multiple adjustable plasmas and/or adjustable electrochemical processing techniques are preferred. The continuous process causes at least one liquid to flow into, through and out of at least one trough member, such liquid being processed, conditioned and/or effected in said trough member(s).
    Type: Application
    Filed: April 12, 2021
    Publication date: December 23, 2021
    Applicant: Clene Nanomedicine
    Inventors: David K. Pierce, Mark G. Mortenson, David A. Bryce
  • Patent number: 11000042
    Abstract: This invention relates generally to novel methods and novel devices for the continuous manufacture of nanoparticles, microparticles and nanoparticle/liquid solution(s). The nanoparticles (and/or micron-sized particles) comprise a variety of possible compositions, sizes and shapes. The particles (e.g., nanoparticles) are caused to be present (e.g., created) in a liquid (e.g., water) by, for example, preferably utilizing at least one adjustable plasma (e.g., created by at least one AC and/or DC power source), which plasma communicates with at least a portion of a surface of the liquid. At least one subsequent and/or substantially simultaneous adjustable electrochemical processing technique is also preferred. Multiple adjustable plasmas and/or adjustable electrochemical processing techniques are preferred. The continuous process causes at least one liquid to flow into, through and out of at least one trough member, such liquid being processed, conditioned and/or effected in said trough member(s).
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: May 11, 2021
    Inventors: David K. Pierce, Mark G. Mortenson, David A. Bryce
  • Publication number: 20190059386
    Abstract: This invention relates generally to novel methods and novel devices for the continuous manufacture of nanoparticles, microparticles and nanoparticle/liquid solution(s). The nanoparticles (and/or micron-sized particles) comprise a variety of possible compositions, sizes and shapes. The particles (e.g., nanoparticles) are caused to be present (e.g., created) in a liquid (e.g., water) by, for example, preferably utilizing at least one adjustable plasma (e.g., created by at least one AC and/or DC power source), which plasma communicates with at least a portion of a surface of the liquid. At least one subsequent and/or substantially simultaneous adjustable electrochemical processing technique is also preferred. Multiple adjustable plasmas and/or adjustable electrochemical processing techniques are preferred. The continuous process causes at least one liquid to flow into, through and out of at least one trough member, such liquid being processed, conditioned and/or effected in said trough member(s).
    Type: Application
    Filed: August 31, 2018
    Publication date: February 28, 2019
    Applicant: Clene Nanomedicine, Inc.
    Inventors: David K. Pierce, Mark G. Mortenson, David A. Bryce
  • Patent number: 10092007
    Abstract: This invention relates generally to novel methods and novel devices for the continuous manufacture of nanoparticles, microparticles and nanoparticle/liquid solution(s). The nanoparticles (and/or micron-sized particles) comprise a variety of possible compositions, sizes and shapes. The particles (e.g., nanoparticles) are caused to be present (e.g., created) in a liquid (e.g., water) by, for example, preferably utilizing at least one adjustable plasma (e.g., created by at least one AC and/or DC power source), which plasma communicates with at least a portion of a surface of the liquid. At least one subsequent and/or substantially simultaneous adjustable electrochemical processing technique is also preferred. Multiple adjustable plasmas and/or adjustable electrochemical processing techniques are preferred. The continuous process causes at least one liquid to flow into, through and out of at least one trough member, such liquid being processed, conditioned and/or effected in said trough member(s).
    Type: Grant
    Filed: August 11, 2017
    Date of Patent: October 9, 2018
    Assignee: Clene Nanomedicine, Inc.
    Inventors: David K. Pierce, Mark G. Mortenson, David A. Bryce
  • Publication number: 20170367345
    Abstract: This invention relates generally to novel methods and novel devices for the continuous manufacture of nanoparticles, microparticles and nanoparticle/liquid solution(s). The nanoparticles (and/or micron-sized particles) comprise a variety of possible compositions, sizes and shapes. The particles (e.g., nanoparticles) are caused to be present (e.g., created) in a liquid (e.g., water) by, for example, preferably utilizing at least one adjustable plasma (e.g., created by at least one AC and/or DC power source), which plasma communicates with at least a portion of a surface of the liquid. At least one subsequent and/or substantially simultaneous adjustable electrochemical processing technique is also preferred. Multiple adjustable plasmas and/or adjustable electrochemical processing techniques are preferred. The continuous process causes at least one liquid to flow into, through and out of at least one trough member, such liquid being processed, conditioned and/or effected in said trough member(s).
    Type: Application
    Filed: August 11, 2017
    Publication date: December 28, 2017
    Applicant: Clene Nanomedicine, Inc.
    Inventors: David K. Pierce, Mark G. Mortenson, David A. Bryce
  • Patent number: 9743672
    Abstract: This invention relates generally to novel methods and novel devices for the continuous manufacture of nanoparticles, microparticles and nanoparticle/liquid solution(s). The nanoparticles (and/or micron-sized particles) comprise a variety of possible compositions, sizes and shapes. The particles (e.g., nanoparticles) are caused to be present (e.g., created) in a liquid (e.g., water) by, for example, preferably utilizing at least one adjustable plasma (e.g., created by at least one AC and/or DC power source), which plasma communicates with at least a portion of a surface of the liquid. At least one subsequent and/or substantially simultaneous adjustable electrochemical processing technique is also preferred. Multiple adjustable plasmas and/or adjustable electrochemical processing techniques are preferred. The continuous process causes at least one liquid to flow into, through and out of at least one trough member, such liquid being processed, conditioned and/or effected in said trough member(s).
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: August 29, 2017
    Inventors: David K. Pierce, Mark G. Mortenson, David A. Bryce
  • Publication number: 20150093453
    Abstract: This invention relates generally to novel methods and novel devices for the continuous manufacture of nanoparticles, microparticles and nanoparticle/liquid solution(s). The nanoparticles (and/or micron-sized particles) comprise a variety of possible compositions, sizes and shapes. The particles (e.g., nanoparticles) are caused to be present (e.g., created) in a liquid (e.g., water) by, for example, preferably utilizing at least one adjustable plasma (e.g., created by at least one AC and/or DC power source), which plasma communicates with at least a portion of a surface of the liquid. At least one subsequent and/or substantially simultaneous adjustable electrochemical processing technique is also preferred. Multiple adjustable plasmas and/or adjustable electrochemical processing techniques are preferred. The continuous process causes at least one liquid to flow into, through and out of at least one trough member, such liquid being processed, conditioned and/or effected in said trough member(s).
    Type: Application
    Filed: November 15, 2013
    Publication date: April 2, 2015
    Inventors: David K. Pierce, Mark G. Mortenson, David A. Bryce
  • Patent number: 8617360
    Abstract: Methods and devices for the continuous manufacture of nanop?rticles, microparticles and nanoparticle/liquid solution(s) are disclosed. The nanoparticles (and/or micron-sized particles) comprise a variety of possible compositions, sizes and shapes. The particles (e.g., nanoparticles) are caused to be present (e. g., created) in a liquid (e.g., water) by utilizing at least one adjustable plasma (e.g., created by at least one AC and/or DC power source), which plasma communicates with at least a portion of a surface of the liquid. The continuous process causes at least one liquid to flow into, through and out of at least one trough member, such liquid being processed, conditioned and/or effected in said trough member(s).
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: December 31, 2013
    Assignee: GR Intellectual Reserve, LLC
    Inventors: David K. Pierce, Mark G. Mortenson, David A. Bryce
  • Publication number: 20110005940
    Abstract: Methods and devices for the continuous manufacture of nanop?rticles, microparticles and nanoparticle/liquid solution(s) are disclosed. The nanoparticles (and/or micron-sized particles) comprise a variety of possible compositions, sizes and shapes. The particles (e.g., nanoparticles) are caused to be present (e. g., created) in a liquid (e.g., water) by utilizing at least one adjustable plasma (e.g., created by at least one AC and/or DC power source), which plasma communicates with at least a portion of a surface of the liquid. The continuous process causes at least one liquid to flow into, through and out of at least one trough member, such liquid being processed, conditioned and/or effected in said trough member(s).
    Type: Application
    Filed: July 11, 2008
    Publication date: January 13, 2011
    Inventors: David K. Pierce, Mark G. Mortenson, David A. Bryce