Patents by Inventor David Karl Stroup

David Karl Stroup has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240122510
    Abstract: Blood sample optimization systems and methods are described that reduce or eliminate contaminates in collected blood samples, which in turn reduces or eliminates false positive readings in blood cultures or other testing of collected blood samples. A blood sample optimization system can include a blood sequestration device located between a patient needle and a sample needle. The blood sequestration device can include a sequestration chamber for sequestering an initial, potentially contaminated aliquot of blood, and may further include a sampling channel that bypasses the sequestration chamber to convey likely uncontaminated blood between the patient needle and the sample needle after the initial aliquot of blood is sequestered in the sequestration chamber.
    Type: Application
    Filed: May 15, 2023
    Publication date: April 18, 2024
    Applicant: KURIN, INC.
    Inventors: Bobby E. ROGERS, Gino KANG, David Karl STROUP, Jonas Dean COCHRAN, Arthur DEPTALA, John DETLOFF, Lonnie POGUE, Brian MACOWSKI
  • Patent number: 11826527
    Abstract: A safety needle assembly includes a housing and a cannula hub connected within a side wall of the housing, a needle connected to the cannula and extending from the cannula hub outward from a proximal end of the housing, and a spring connected with the housing. The assembly includes a barrel connected with the spring and at least partially contained within the housing to least partially cover the cannula hub. The barrel is configured for moving, sliding, traveling, activating, relocating, or transitioning from a first mode in which the barrel is securely retracted and locked at least partially within the housing and the needle extends through an aperture of the barrel and the proximal end of the housing, to a second mode in which the barrel extends from the proximal end and beyond the needle.
    Type: Grant
    Filed: July 25, 2018
    Date of Patent: November 28, 2023
    Assignee: KURIN, INC.
    Inventors: Bobby E. Rogers, David Karl Stroup
  • Patent number: 11744494
    Abstract: Blood sample optimization systems and methods are described that reduce or eliminate contaminates in collected blood samples, which in turn reduces or eliminates false positive readings in blood cultures or other testing of collected blood samples. A blood sample optimization system can include a blood sequestration device located between a patient needle and a sample needle. The blood sequestration device can include a sequestration chamber for sequestering an initial, potentially contaminated aliquot of blood, and may further include a sampling channel that bypasses the sequestration chamber to convey likely uncontaminated blood between the patient needle and the sample needle after the initial aliquot of blood is sequestered in the sequestration chamber.
    Type: Grant
    Filed: November 10, 2020
    Date of Patent: September 5, 2023
    Assignee: KURIN, INC.
    Inventors: Bobby E. Rogers, Gino Kang, David Karl Stroup, Jonas Dean Cochran, Arthur Deptala, John Detloff, Lonnie Pogue, Brian Macowski
  • Publication number: 20230116910
    Abstract: Blood sample optimization systems and methods are described that reduce or eliminate contaminates in collected blood samples, which in turn reduces or eliminates false positive readings in blood cultures or other testing of collected blood samples. A blood sample optimization system can include a blood sequestration device located between a patient needle and a sample needle. The blood sequestration device can include a sequestration chamber for sequestering an initial, potentially contaminated aliquot of blood, and may further include a sampling channel that bypasses the sequestration chamber to convey likely uncontaminated blood between the patient needle and the sample needle after the initial aliquot of blood is sequestered in the sequestration chamber.
    Type: Application
    Filed: April 26, 2022
    Publication date: April 13, 2023
    Inventors: Bobby E. ROGERS, Gino KANG, David Karl STROUP, Jonas Dean COCHRAN, Arthur DEPTALA, John DETLOFF, Lonnie POGUE, Brian MACOWSKI
  • Patent number: 11617525
    Abstract: A blood sequestration device includes an inlet path, an outlet path, a sequestration chamber, and a sampling channel. The sequestration chamber is connected with the inlet path by a junction and is configured to receive a first portion of blood through the inlet path. The sequestration chamber has a vent that allows air to be displaced by the first portion of blood, the junction being configured to inhibit a return to the inlet path of any of the first portion of blood received by the sequestration chamber. The sampling channel is connected between the inlet path and the outlet path, and configured to convey subsequent amounts of blood between the inlet path and the outlet path after the first amount of blood is received by the sequestration chamber.
    Type: Grant
    Filed: March 13, 2020
    Date of Patent: April 4, 2023
    Assignee: KURIN, INC.
    Inventors: Bobby E. Rogers, Gino Kang, David Karl Stroup, Jonas Dean Cochran, Arthur Deptala, John Detloff, Lonnie Pogue, Brian Macowski, Kevin Nason
  • Publication number: 20220395205
    Abstract: Blood sample optimization systems and methods are described that reduce or eliminate contaminates in collected blood samples, which in turn reduces or eliminates false positive readings in blood cultures or other testing of collected blood samples. A blood sample optimization system can include a blood sequestration device located between a patient needle and a sample needle. The blood sequestration device can include a sequestration chamber for sequestering an initial, potentially contaminated aliquot of blood, and may further include a sampling channel that bypasses the sequestration chamber to convey likely uncontaminated blood between the patient needle and the sample needle after the initial aliquot of blood is sequestered in the sequestration chamber.
    Type: Application
    Filed: August 22, 2022
    Publication date: December 15, 2022
    Inventors: Bobby E. ROGERS, Gino KANG, David Karl STROUP, Jonas Dean COCHRAN, Arthur DEPTALA, John DETLOFF, Lonnie POGUE, Brian MACOWSKI
  • Patent number: 11311219
    Abstract: Blood sample optimization systems and methods are described that reduce or eliminate contaminates in collected blood samples, which in turn reduces or eliminates false positive readings in blood cultures or other testing of collected blood samples. A blood sample optimization system can include a blood sequestration device located between a patient needle and a sample needle. The blood sequestration device can include a sequestration chamber for sequestering an initial, potentially contaminated aliquot of blood, and may further include a sampling channel that bypasses the sequestration chamber to convey likely uncontaminated blood between the patient needle and the sample needle after the initial aliquot of blood is sequestered in the sequestration chamber.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: April 26, 2022
    Assignee: Kurin, Inc.
    Inventors: Bobby E. Rogers, Gino Kang, David Karl Stroup, Jonas Dean Cochran, Arthur Deptala, John Detloff, Lonnie Pogue, Brian Macowski
  • Publication number: 20210145336
    Abstract: Blood sample optimization systems and methods are described that reduce or eliminate contaminates in collected blood samples, which in turn reduces or eliminates false positive readings in blood cultures or other testing of collected blood samples. A blood sample optimization system can include a blood sequestration device located between a patient needle and a sample needle. The blood sequestration device can include a sequestration chamber for sequestering an initial, potentially contaminated aliquot of blood, and may further include a sampling channel that bypasses the sequestration chamber to convey likely uncontaminated blood between the patient needle and the sample needle after the initial aliquot of blood is sequestered in the sequestration chamber.
    Type: Application
    Filed: November 10, 2020
    Publication date: May 20, 2021
    Inventors: Bobby E. ROGERS, Gino KANG, David Karl STROUP, Jonas Dean COCHRAN, Arthur DEPTALA, John DETLOFF, Lonnie POGUE, Brian MACOWSKI
  • Patent number: 10827964
    Abstract: Blood sample optimization systems and methods are described that reduce or eliminate contaminates in collected blood samples, which in turn reduces or eliminates false positive readings in blood cultures or other testing of collected blood samples. A blood sample optimization system can include a blood sequestration device located between a patient needle and a sample needle. The blood sequestration device can include a sequestration chamber for sequestering an initial, potentially contaminated aliquot of blood, and may further include a sampling channel that bypasses the sequestration chamber to convey likely uncontaminated blood between the patient needle and the sample needle after the initial aliquot of blood is sequestered in the sequestration chamber.
    Type: Grant
    Filed: February 9, 2018
    Date of Patent: November 10, 2020
    Assignee: Kurin, Inc.
    Inventors: Bobby E. Rogers, Gino Kang, David Karl Stroup, Jonas Dean Cochran, Arthur Deptala, John Detloff, Lonnie Pogue, Brian Macowski, Chad Garrett
  • Publication number: 20200305780
    Abstract: A fluid sample optimization device for optimizing a fluid sample includes an inlet, an outlet, a sample path connected between the inlet and the outlet, and a contaminant containment reservoir connected between the inlet and the outlet. The contaminant containment reservoir includes an air permeable fluid resistor proximate the outlet, and is arranged to receive, when a pressure differential is applied between the inlet and the outlet, a first portion of the fluid sample to displace air therein through the air permeable fluid resistor and the outlet, such that upon receipt of the first portion of the fluid sample and containment of the contaminants in the contaminant containment reservoir, subsequent portions of the fluid sample can be conveyed by the sample path from the inlet to the outlet when subsequent pressure differentials are applied between the inlet and the outlet.
    Type: Application
    Filed: April 1, 2020
    Publication date: October 1, 2020
    Inventors: Bobby E. ROGERS, Kevin NASON, David Karl STROUP, David MATSUURA, Belinko MATSUURA
  • Publication number: 20200281514
    Abstract: A blood sequestration device includes an inlet path, an outlet path, a sequestration chamber, and a sampling channel. The sequestration chamber is connected with the inlet path by a junction and is configured to receive a first portion of blood through the inlet path. The sequestration chamber has a vent that allows air to be displaced by the first portion of blood, the junction being configured to inhibit a return to the inlet path of any of the first portion of blood received by the sequestration chamber. The sampling channel is connected between the inlet path and the outlet path, and configured to convey subsequent amounts of blood between the inlet path and the outlet path after the first amount of blood is received by the sequestration chamber.
    Type: Application
    Filed: March 13, 2020
    Publication date: September 10, 2020
    Applicant: Kurin, Inc.
    Inventors: Bobby E. ROGERS, Gino KANG, David Karl STROUP, Jonas Dean COCHRAN, Arthur DEPTALA, John DETLOFF, Lonnie POGUE, Brian MACOWSKI, Kevin Nason
  • Publication number: 20190030293
    Abstract: A safety needle assembly includes a housing and a cannula hub connected within a side wall of the housing, a needle connected to the cannula and extending from the cannula hub outward from a proximal end of the housing, and a spring connected with the housing. The assembly includes a barrel connected with the spring and at least partially contained within the housing to least partially cover the cannula hub. The barrel is configured for moving, sliding, traveling, activating, relocating, or transitioning from a first mode in which the barrel is securely retracted and locked at least partially within the housing and the needle extends through an aperture of the barrel and the proximal end of the housing, to a second mode in which the barrel extends from the proximal end and beyond the needle.
    Type: Application
    Filed: July 25, 2018
    Publication date: January 31, 2019
    Applicant: KURIN, INC.
    Inventors: Bobby E. ROGERS, David Karl STROUP
  • Publication number: 20180271425
    Abstract: Blood sample optimization systems and methods are described that reduce or eliminate contaminates in collected blood samples, which in turn reduces or eliminates false positive readings in blood cultures or other testing of collected blood samples. A blood sample optimization system can include a blood sequestration device located between a patient needle and a sample needle. The blood sequestration device can include a sequestration chamber for sequestering an initial, potentially contaminated aliquot of blood, and may further include a sampling channel that bypasses the sequestration chamber to convey likely uncontaminated blood between the patient needle and the sample needle after the initial aliquot of blood is sequestered in the sequestration chamber.
    Type: Application
    Filed: February 9, 2018
    Publication date: September 27, 2018
    Applicant: Kurin, Inc.
    Inventors: Bobby E. ROGERS, Gino KANG, David Karl STROUP, Jonas Dean COCHRAN, Arthur DEPTALA, John DETLOFF, Lonnie POGUE, Brian MACOWSKI, Chad GARRETT
  • Publication number: 20180177445
    Abstract: Blood sample optimization systems and methods are described that reduce or eliminate contaminates in collected blood samples, which in turn reduces or eliminates false positive readings in blood cultures or other testing of collected blood samples. A blood sample optimization system can include a blood sequestration device located between a patient needle and a sample needle. The blood sequestration device can include a sequestration chamber for sequestering an initial, potentially contaminated aliquot of blood, and may further include a sampling channel that bypasses the sequestration chamber to convey likely uncontaminated blood between the patient needle and the sample needle after the initial aliquot of blood is sequestered in the sequestration chamber.
    Type: Application
    Filed: December 27, 2017
    Publication date: June 28, 2018
    Applicant: KURIN, INC.
    Inventors: Bobby E. ROGERS, Gino KANG, David Karl STROUP, Jonas Dean COCHRAN, Arthur DEPTALA, John DETLOFF, Lonnie POGUE, Brian MACOWSKI, Chad GARRETT
  • Patent number: 9849277
    Abstract: A valve is provided for controlling flow along a fluid line that includes an outer shell and an inner housing slidably disposed therein that includes connector threads surrounding a boss on one end and a passage through the boss. A backing member is coupled to the outer shell and has a sealing pin extending into the passage. The inner housing is movable helically relative to the outer shell from a closed position wherein a sealing pin engages an outlet opening at the distal end of the boss to seal the opening and an open position in which the inner housing is directed away from the sealing pin to open a fluid path through the valve. A torque limiter mechanism between the outer shell and inner housing resists movement from the valve closed position to the valve open position until a selected torque level is reached.
    Type: Grant
    Filed: October 28, 2013
    Date of Patent: December 26, 2017
    Assignee: Infusion Innovations, Inc.
    Inventor: David Karl Stroup
  • Patent number: 9717517
    Abstract: An articulating laparoscopic instrument including a handle, an outer shaft, an end effector, and a wrist assembly. The wrist assembly connects the end effector to the shaft and includes torque and articulation mechanisms. The torque mechanism includes a plurality of links disposed over the rod and connected with one another in a pivotable yet rotationally locked fashion. The articulation mechanism includes a plurality of articulation member disposed over the rod to collectively define a deflection section. The links freely rotate relative to the articulation members, with the rod and links collectively bending in response to a change in shape of the deflection section.
    Type: Grant
    Filed: November 10, 2015
    Date of Patent: August 1, 2017
    Assignee: CareFusion 2200, Inc.
    Inventors: David Karl Stroup, Arthur Deptala
  • Patent number: 9592365
    Abstract: The invention provides an apparatus and method of securing a length of flexible conduit to a subject, and adjusting the flexible conduit to a length tailored to the subject, in order to reduce or eliminate excess conduit traversing the subject's body. The apparatus comprises a base with elongate channels for accepting flexible conduit, a lid which mates with the base, and a securing member for attaching the mated base and lid to the body of the subject.
    Type: Grant
    Filed: July 19, 2013
    Date of Patent: March 14, 2017
    Assignee: SOTERA WIRELESS, INC.
    Inventors: David Karl Stroup, Jose Felix Jacquez, Jr., Arthur Deptala
  • Publication number: 20160183960
    Abstract: An articulating laparoscopic instrument including a handle, an outer shaft, an end effector, and a wrist assembly. The wrist assembly connects the end effector to the shaft and includes torque and articulation mechanisms. The torque mechanism includes a plurality of links disposed over the rod and connected with one another in a pivotable yet rotationally locked fashion. The articulation mechanism includes a plurality of articulation member disposed over the rod to collectively define a deflection section. The links freely rotate relative to the articulation members, with the rod and links collectively bending in response to a change in shape of the deflection section.
    Type: Application
    Filed: November 10, 2015
    Publication date: June 30, 2016
    Applicant: CAREFUSION 2200, INC.
    Inventors: David Karl Stroup, Arthur Deptala
  • Publication number: 20160144109
    Abstract: Connector assemblies are provided for controlling flow in a fluid line that include an outer shell, an inner housing, and a tubular member. The inner housing is disposed within the outer shell and includes a boss disposed adjacent a first end of the outer shell. The inner housing is movable axially within the outer shell between first and second positions when a device is connected to the first end. The tubular member is carried by the inner housing and includes a fluid passage extending between a second end of the outer shell. The tubular member moves axially as the inner housing moves between the first and second positions, and cam features on the outer shell and the tubular member cause the tubular member to rotate as the inner housing moves between the first and second positions, thereby opening a fluid path between the fluid passage and the first end.
    Type: Application
    Filed: September 23, 2015
    Publication date: May 26, 2016
    Inventor: David Karl STROUP
  • Patent number: 9211134
    Abstract: An articulating laparoscopic instrument including a handle, an outer shaft, an end effector, and a wrist assembly. The wrist assembly connects the end effector to the shaft and includes torque and articulation mechanisms. The torque mechanism includes a plurality of links disposed over the rod and connected with one another in a pivotable yet rotationally locked fashion. The articulation mechanism includes a plurality of articulation member disposed over the rod to collectively define a deflection section. The links freely rotate relative to the articulation members, with the rod and links collectively bending in response to a change in shape of the deflection section.
    Type: Grant
    Filed: April 9, 2012
    Date of Patent: December 15, 2015
    Assignee: CareFusion 2200, Inc.
    Inventors: David Karl Stroup, Arthur Deptala