Patents by Inventor David Keeler

David Keeler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240198074
    Abstract: A medical adapter gripping tool is operable to removably hold a catheter element and includes a pair of elongated tool levers. Each tool lever includes a longitudinally extending lever body and presents opposite lever ends. The tool levers are pivotally attached relative to one another at a pivot joint that permits the tool levers to swing relative to each other about a lateral pivot axis. The tool levers are relatively swingable into and out of a closed position to grip the catheter element.
    Type: Application
    Filed: April 15, 2022
    Publication date: June 20, 2024
    Inventor: David Keeler
  • Patent number: 8897630
    Abstract: An aerosol generator periodically forms aerosolized fragrance material by repeatedly supplying a liquid fragrance material to a capillary passage via only capillary action and heating the capillary passage, such that the liquid fragrance material at least partially volatilizes and is driven out of an outlet of the capillary passage. A wick feeds the liquid fragrance material to an inlet of the capillary passage by capillary action. An apparatus and method for generating such an aerosolized fragrance material, as well as the methods of heating, are disclosed.
    Type: Grant
    Filed: May 10, 2013
    Date of Patent: November 25, 2014
    Assignee: Philip Morris USA Inc.
    Inventors: Walter A. Nichols, David Keeler, Christopher Tucker
  • Publication number: 20140180799
    Abstract: A technique for measuring a video profit for a product includes performing an A/B test for a product while monitoring for customer conversion. In this case, at least one of ‘A’ and ‘B’ correspond to video. A unique number of visitors to a product webpage that viewed a call-to-action for a video of the product is determined based on the test. A gain that accounts for customer bias is determined based on the test. A non-viewer conversion rate is determined based on the test. A video view rate is determined based on the test. A video conversion lift is determined based on the test. An abandonment factor is determined based on the test. Finally, an incremental video profit for the product is determined based on the unique number of visitors, the gain, the non-viewer conversion rate, the video view rate, the video conversion lift, and the abandonment factor.
    Type: Application
    Filed: December 26, 2013
    Publication date: June 26, 2014
    Applicant: INVODO, INC.
    Inventors: James David Keeler, Lane Stafford Wimberley
  • Publication number: 20130243410
    Abstract: An aerosol generator periodically forms aerosolized fragrance material by repeatedly supplying a liquid fragrance material to a capillary passage via only capillary action and heating the capillary passage, such that the liquid fragrance material at least partially volatilizes and is driven out of an outlet of the capillary passage. A wick feeds the liquid fragrance material to an inlet of the capillary passage by capillary action. An apparatus and method for generating such an aerosolized fragrance material, as well as the methods of heating, are disclosed.
    Type: Application
    Filed: May 10, 2013
    Publication date: September 19, 2013
    Applicant: Philip Morris USA Inc.
    Inventors: Walter A. Nichols, David Keeler, Christopher Tucker
  • Patent number: 8442390
    Abstract: An aerosol generator periodically forms aerosolized fragrance material by repeatedly supplying a liquid fragrance material to a capillary passage via only capillary action and heating the capillary passage, such that the liquid fragrance material at least partially volatilizes and is driven out of an outlet of the capillary passage. A wick feeds the liquid fragrance material to an inlet of the capillary passage by capillary action. An apparatus and method for generating such an aerosolized fragrance material, as well as the methods of heating, are disclosed.
    Type: Grant
    Filed: August 28, 2008
    Date of Patent: May 14, 2013
    Assignee: Philip Morris USA Inc.
    Inventors: Walter A. Nichols, David Keeler, Christopher Tucker
  • Publication number: 20090194607
    Abstract: An aerosol generator periodically forms aerosolized fragrance material by repeatedly supplying a liquid fragrance material to a capillary passage via only capillary action and heating the capillary passage, such that the liquid fragrance material at least partially volatilizes and is driven out of an outlet of the capillary passage. A wick feeds the liquid fragrance material to an inlet of the capillary passage by capillary action. An apparatus and method for generating such an aerosolized fragrance material, as well as the methods of heating, are disclosed.
    Type: Application
    Filed: August 28, 2008
    Publication date: August 6, 2009
    Applicant: Philip Morris USA Inc.
    Inventors: Walter A. Nichols, David Keeler, Christopher Tucker
  • Patent number: 7167776
    Abstract: A programmable vapor generator forms a volatilized liquid by supplying a material in liquid form to a flow passage and heating the flow passage, such that the material volatilizes and expands out of an outlet of the channel. The volatilized material, if desired, mixes with ambient air such that volatilized material condenses to form the aerosol. An apparatus and method for generating such a volatilized liquid, as well as the control and methods of heating, are disclosed as an analytical tool useful for experimental use, a tool useful for production of commercial products or an inhaler device.
    Type: Grant
    Filed: September 2, 2004
    Date of Patent: January 23, 2007
    Assignee: Philip Morris USA Inc.
    Inventors: Niranjan Maharajh, Chris Tucker, David Keeler
  • Patent number: 7139619
    Abstract: A kiln thermal and combustion control. A predictive model is provided of the dynamics of selected aspects of the operation of the system for modeling the dynamics thereof. The model has at least two discrete models associated therewith that model at least two of the selected aspects, the at least two discrete models having different dynamic responses. An optimizer receives desired values for the selected aspects of the operation of the system modeled by the model and optimizes the inputs to the model to minimize error between the predicted and desired values. A control input device then applies the optimized input values to the system after optimization thereof.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: November 21, 2006
    Assignee: Pavilion Technologies, Inc.
    Inventors: Gregory D. Martin, Eugene Boe, Stephen Piche, James David Keeler, Douglas Timmer, Mark Gerules, John P. Havener, Steven J. McGarel
  • Patent number: 7110834
    Abstract: A kiln thermal and combustion control. A predictive model is provided of the dynamics of selected aspects of the operation of the system for modeling the dynamics thereof. The model has at least two discrete models associated therewith that model at least two of the selected aspects, the at least two discrete models having different dynamic responses. An optimizer receives desired values for the selected aspects of the operation of the system modeled by the model and optimizes the inputs to the model to minimize error between the predicted and desired values. A control input device then applies the optimized input values to the system after optimization thereof.
    Type: Grant
    Filed: September 23, 2003
    Date of Patent: September 19, 2006
    Assignee: Pavilion Technologies, Inc.
    Inventors: Gregory D. Martin, Eugene Boe, Stephen Piche, James David Keeler, Douglas Timmer, Mark Gerules, John P. Havener, Steven J. McGarel
  • Patent number: 7050866
    Abstract: A method for providing independent static and dynamic models in a prediction, control and optimization environment utilizes an independent static model (20) and an independent dynamic model (22). The static model (20) is a rigorous predictive model that is trained over a wide range of data, whereas the dynamic model (22) is trained over a narrow range of data. The gain K of the static model (20) is utilized to scale the gain k of the dynamic model (22). The forced dynamic portion of the model (22) referred to as the bi variables are scaled by the ratio of the gains K and k. The bi have a direct effect on the gain of a dynamic model (22). This is facilitated by a coefficient modification block (40). Thereafter, the difference between the new value input to the static model (20) and the prior steady-state value is utilized as an input to the dynamic model (22). The predicted dynamic output is then summed with the previous steady-state value to provide a predicted value Y.
    Type: Grant
    Filed: May 17, 2004
    Date of Patent: May 23, 2006
    Assignee: Pavilion Technologies, Inc.
    Inventors: Gregory D. Martin, Eugene Boe, Stephen Piche, James David Keeler, Douglas Timmer, Mark Gerules, John P. Havener
  • Patent number: 7047089
    Abstract: A method and apparatus for controlling a non-linear mill. A linear controller is provided having a linear gain k that is operable to receive inputs representing measured variables of the plant and predict on an output of the linear controller predicted control values for manipulatible variables that control the plant. A non-linear model of the plant is provided for storing a representation of the plant over a trained region of the operating input space and having a steady-state gain K associated therewith. The gain k of the linear model is adjusted with the gain K of the non-linear model in accordance with a predetermined relationship as the measured variables change the operating region of the input space at which the linear controller is predicting the values for the manipulatible variables. The predicted manipulatible variables are then output after the step of adjusting the gain k.
    Type: Grant
    Filed: May 11, 2004
    Date of Patent: May 16, 2006
    Assignee: Pavilion Technologies
    Inventors: Gregory D. Martin, Eugene Boe, Stephen Piche, James David Keeler, Douglas Timmer, Mark Gerules, John P. Havener
  • Publication number: 20060094566
    Abstract: There is provided a fuel injector system for vaporizing liquid fuel and metering the vapor to an internal combustion engine of an automobile. The system has at least one fuel injector with at least one capillary flow passage with a heat source arranged along the flow passage capable of heating liquid fuel in the flow passage to a level sufficient to vaporize it, a solenoid operated metering valve located at the capillary outlet for metering vaporized fuel to the internal combustion engine, and a system for operating the metering valve while delivering the vaporized fuel at an opening and closing frequency of at least 15 Hz or more preferably at least 60 Hz independent of engine rpm. The system is expected to be useful for starting a cold engine with reduced emissions.
    Type: Application
    Filed: November 3, 2005
    Publication date: May 4, 2006
    Inventors: David Keeler, Francis Sprinkel, Niranjan Maharajh, Mimmo Elia, Josh Breinlinger, Jan-Roger Linna
  • Patent number: 7024252
    Abstract: A method and apparatus for controlling a non-linear mill. A linear controller is provided having a linear gain k that is operable to receive inputs representing measured variables of the plant and predict on an output of the linear controller predicted control values for manipulatible variables that control the plant. A non-linear model of the plant is provided for storing a representation of the plant over a trained region of the operating input space and having a steady-state gain K associated therewith. The gain k of the linear model is adjusted with the gain K of the non-linear model in accordance with a predetermined relationship as the measured variables change the operating region of the input space at which the linear controller is predicting the values for the manipulatible variables. The predicted manipulatible variables are then output after the step of adjusting the gain k.
    Type: Grant
    Filed: September 26, 2005
    Date of Patent: April 4, 2006
    Assignee: Pavilion Technologies, Inc.
    Inventors: Gregory D. Martin, Eugene Boe, Stephen Piche, James David Keeler, Douglas Timmer, Mark Gerules, John P. Havener
  • Publication number: 20060047368
    Abstract: A programmable vapor generator forms a volatilized liquid by supplying a material in liquid form to a flow passage and heating the flow passage, such that the material volatilizes and expands out of an outlet of the channel. The volatilized material, if desired, mixes with ambient air such that volatilized material condenses to form the aerosol. An apparatus and method for generating such a volatilized liquid, as well as the control and methods of heating, are disclosed as an analytical tool useful for experimental use, a tool useful for production of commercial products or an inhaler device.
    Type: Application
    Filed: September 2, 2004
    Publication date: March 2, 2006
    Inventors: Niranjan Maharajh, Chris Tucker, David Keeler
  • Patent number: 6985781
    Abstract: A plant is operable to receive control inputs c(t) and provide an output y(t). The plant (72) has associated therewith state variables s(t) that are not variable. A control network (74) models the plant by providing a predicted output which is combined with a desired output to generate an error that is back propagated through an inverse control network to generate a control error signal that is input to a distributed control system to vary the control inputs to the plant in order to change the output y(t) to meet the desired output. The inverse model represents the dependencies of the plant output on the control variables parameterized by external influences to the plant.
    Type: Grant
    Filed: January 8, 2002
    Date of Patent: January 10, 2006
    Assignee: Pavilion Technologies, Inc.
    Inventors: James David Keeler, Eric Jon Hartman, Kadir Liano, Ralph Bruce Ferguson
  • Patent number: 6957203
    Abstract: A neural network system is provided that models the system in a system model (12) with the output thereof providing a predicted output. This predicted output is modified or controlled by an output control (14). Input data is processed in a data preprocess step (10) to reconcile the data for input to the system model (12). Additionally, the error resulted from the reconciliation is input to an uncertainty model to predict the uncertainty in the predicted output. This is input to a decision processor (20) which is utilized to control the output control (14). The output control (14) is controlled to either vary the predicted output or to inhibit the predicted output whenever the output of the uncertainty model (18) exceeds a predetermined decision threshold, input by a decision threshold block (22).
    Type: Grant
    Filed: July 7, 2003
    Date of Patent: October 18, 2005
    Assignee: Pavilion Technologies
    Inventors: James David Keeler, Eric Jon Hartman, Ralph Bruce Ferguson
  • Publication number: 20050143866
    Abstract: A programmable aerosol generator forms a volatilized liquid by supplying a material in liquid form to a flow passage and heating the flow passage, such that the material volatilizes and expands out of an outlet of the channel. The volatilized material, if desired, mixes with ambient air such that volatilized material condenses to form the aerosol. An apparatus and method for generating such a volatilized liquid, as well as the control and methods of heating, are disclosed as an analytical tool useful for experimental use, a tool useful for production of commercial products or an inhaler device.
    Type: Application
    Filed: June 21, 2004
    Publication date: June 30, 2005
    Inventors: Douglas McRae, John Felter, Clinton Blake, Mark Capps, Kenneth Cox, David Keeler, Rajiv Gupta
  • Publication number: 20040210325
    Abstract: A method and apparatus for controlling a non-linear mill. A linear controller is provided having a linear gain k that is operable to receive inputs representing measured variables of the plant and predict on an output of the linear controller predicted control values for manipulatible variables that control the plant. A non-linear model of the plant is provided for storing a representation of the plant over a trained region of the operating input space and having a steady-state gain K associated therewith. The gain k of the linear model is adjusted with the gain K of the non-linear model in accordance with a predetermined relationship as the measured variables change the operating region of the input space at which the linear controller is predicting the values for the manipulatible variables.
    Type: Application
    Filed: May 11, 2004
    Publication date: October 21, 2004
    Inventors: Gregory D. Martin, Eugene Boe, Stephen Piche, James David Keeler, Douglas Timmer, Mark Gerules, John P. Havener
  • Publication number: 20040133533
    Abstract: A neural network system is provided that models the system in a system model (12) with the output thereof providing a predicted output. This predicted output is modified or controlled by an output control (14). Input data is processed in a data preprocess step (10) to reconcile the data for input to the system model (12). Additionally, the error resulted from the reconciliation is input to an uncertainty model to predict the uncertainty in the predicted output. This is input to a decision processor (20) which is utilized to control the output control (14). The output control (14) is controlled to either vary the predicted output or to inhibit the predicted output whenever the output of the uncertainty model (18) exceeds a predetermined decision threshold, input by a decision threshold block (22).
    Type: Application
    Filed: July 7, 2003
    Publication date: July 8, 2004
    Inventors: James David Keeler, Eric Jon Hartman, Ralph Bruce Ferguson
  • Patent number: D714154
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: September 30, 2014
    Inventor: David Keeler