Patents by Inventor David Kneeburg

David Kneeburg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9434150
    Abstract: In an aspect, a system and method for assembling a semiconductor device on a receiving surface of a destination substrate is disclosed. In another aspect, a system and method for assembling a semiconductor device on a destination substrate with topographic features is disclosed. In another aspect, a gravity-assisted separation system and method for printing semiconductor device is disclosed. In another aspect, various features of a transfer device for printing semiconductor devices are disclosed.
    Type: Grant
    Filed: July 20, 2015
    Date of Patent: September 6, 2016
    Assignee: X-Celeprint Limited
    Inventors: Christopher Bower, Matthew Meitl, David Gomez, Salvatore Bonafede, David Kneeburg
  • Patent number: 9437782
    Abstract: The disclosed technology provides micro-assembled micro-LED displays and lighting elements using arrays of micro-LEDs that are too small (e.g., micro-LEDs with a width or diameter of 10 ?m to 50 ?m), numerous, or fragile to assemble by conventional means. The disclosed technology provides for micro-LED displays and lighting elements assembled using micro-transfer printing technology. The micro-LEDs can be prepared on a native substrate and printed to a display substrate (e.g., plastic, metal, glass, or other materials), thereby obviating the manufacture of the micro-LEDs on the display substrate. In certain embodiments, the display substrate is transparent and/or flexible.
    Type: Grant
    Filed: June 18, 2015
    Date of Patent: September 6, 2016
    Assignee: X-Celeprint Limited
    Inventors: Christopher Bower, Matthew Meitl, David Gomez, Salvatore Bonafede, David Kneeburg, Alin Fecioru, Carl Prevatte
  • Patent number: 9358775
    Abstract: In an aspect, a system and method for assembling a semiconductor device on a receiving surface of a destination substrate is disclosed. In another aspect, a system and method for assembling a semiconductor device on a destination substrate with topographic features is disclosed. In another aspect, a gravity-assisted separation system and method for printing semiconductor device is disclosed. In another aspect, various features of a transfer device for printing semiconductor devices are disclosed.
    Type: Grant
    Filed: July 20, 2015
    Date of Patent: June 7, 2016
    Assignee: X-CELEPRINT LIMITED
    Inventors: Christopher Bower, Matthew Meitl, David Gomez, Salvatore Bonafede, David Kneeburg
  • Publication number: 20160020131
    Abstract: In an aspect, a system and method for assembling a semiconductor device on a receiving surface of a destination substrate is disclosed. In another aspect, a system and method for assembling a semiconductor device on a destination substrate with topographic features is disclosed. In another aspect, a gravity-assisted separation system and method for printing semiconductor device is disclosed. In another aspect, various features of a transfer device for printing semiconductor devices are disclosed.
    Type: Application
    Filed: July 20, 2015
    Publication date: January 21, 2016
    Inventors: Christopher Bower, Matthew Meitl, David Gomez, Salvatore Bonafede, David Kneeburg
  • Publication number: 20160020120
    Abstract: In an aspect, a system and method for assembling a semiconductor device on a receiving surface of a destination substrate is disclosed. In another aspect, a system and method for assembling a semiconductor device on a destination substrate with topographic features is disclosed. In another aspect, a gravity-assisted separation system and method for printing semiconductor device is disclosed. In another aspect, various features of a transfer device for printing semiconductor devices are disclosed.
    Type: Application
    Filed: July 20, 2015
    Publication date: January 21, 2016
    Inventors: Christopher Bower, Matthew Meitl, David Gomez, Salvatore Bonafede, David Kneeburg
  • Publication number: 20160020127
    Abstract: In an aspect, a system and method for assembling a semiconductor device on a receiving surface of a destination substrate is disclosed. In another aspect, a system and method for assembling a semiconductor device on a destination substrate with topographic features is disclosed. In another aspect, a gravity-assisted separation system and method for printing semiconductor device is disclosed. In another aspect, various features of a transfer device for printing semiconductor devices are disclosed.
    Type: Application
    Filed: July 20, 2015
    Publication date: January 21, 2016
    Inventors: Christopher Bower, Matthew Meitl, David Gomez, Salvatore Bonafede, David Kneeburg
  • Publication number: 20160016399
    Abstract: In an aspect, a system and method for assembling a semiconductor device on a receiving surface of a destination substrate is disclosed. In another aspect, a system and method for assembling a semiconductor device on a destination substrate with topographic features is disclosed. In another aspect, a gravity-assisted separation system and method for printing semiconductor device is disclosed. In another aspect, various features of a transfer device for printing semiconductor devices are disclosed.
    Type: Application
    Filed: July 20, 2015
    Publication date: January 21, 2016
    Inventors: Christopher Bower, Matthew Meitl, David Gomez, Salvatore Bonafede, David Kneeburg
  • Publication number: 20160018094
    Abstract: The disclosed technology provides micro-assembled micro-LED displays and lighting elements using arrays of micro-LEDs that are too small (e.g., micro-LEDs with a width or diameter of 10 ?m to 50 ?m), numerous, or fragile to assemble by conventional means. The disclosed technology provides for micro-LED displays and lighting elements assembled using micro-transfer printing technology. The micro-LEDs can be prepared on a native substrate and printed to a display substrate (e.g., plastic, metal, glass, or other materials), thereby obviating the manufacture of the micro-LEDs on the display substrate. In certain embodiments, the display substrate is transparent and/or flexible.
    Type: Application
    Filed: June 18, 2015
    Publication date: January 21, 2016
    Inventors: Christopher Bower, Matthew Meitl, David Gomez, Salvatore Bonafede, David Kneeburg, Alin Fecioru, Carl Prevatte
  • Publication number: 20160020130
    Abstract: In an aspect, a system and method for assembling a semiconductor device on a receiving surface of a destination substrate is disclosed. In another aspect, a system and method for assembling a semiconductor device on a destination substrate with topographic features is disclosed. In another aspect, a gravity-assisted separation system and method for printing semiconductor device is disclosed. In another aspect, various features of a transfer device for printing semiconductor devices are disclosed.
    Type: Application
    Filed: July 20, 2015
    Publication date: January 21, 2016
    Inventors: Christopher Bower, Matthew Meitl, David Gomez, Salvatore Bonafede, David Kneeburg
  • Publication number: 20160005721
    Abstract: The disclosed technology provides micro-assembled micro-LED displays and lighting elements using arrays of micro-LEDs that are too small (e.g., micro-LEDs with a width or diameter of 10 ?m to 50 ?m), numerous, or fragile to assemble by conventional means. The disclosed technology provides for micro-LED displays and lighting elements assembled using micro-transfer printing technology. The micro-LEDs can be prepared on a native substrate and printed to a display substrate (e.g., plastic, metal, glass, or other materials), thereby obviating the manufacture of the micro-LEDs on the display substrate. In certain embodiments, the display substrate is transparent and/or flexible.
    Type: Application
    Filed: June 18, 2015
    Publication date: January 7, 2016
    Inventors: Christopher Bower, Matthew Meitl, David Gomez, Salvatore Bonafede, David Kneeburg, Alin Fecioru, Carl Prevatte
  • Publication number: 20150371585
    Abstract: The disclosed technology provides micro-assembled micro-LED displays and lighting elements using arrays of micro-LEDs that are too small (e.g., micro-LEDs with a width or diameter of 10 ?m to 50 ?m), numerous, or fragile to assemble by conventional means. The disclosed technology provides for micro-LED displays and lighting elements assembled using micro-transfer printing technology. The micro-LEDs can be prepared on a native substrate and printed to a display substrate (e.g., plastic, metal, glass, or other materials), thereby obviating the manufacture of the micro-LEDs on the display substrate. In certain embodiments, the display substrate is transparent and/or flexible.
    Type: Application
    Filed: June 18, 2015
    Publication date: December 24, 2015
    Inventors: Christopher Bower, Matthew Meitl, David Gomez, Salvatore Bonafede, David Kneeburg, Alin Fecioru, Carl Prevatte
  • Publication number: 20150373793
    Abstract: The disclosed technology provides micro-assembled micro-LED displays and lighting elements using arrays of micro-LEDs that are too small (e.g., micro-LEDs with a width or diameter of 10 ?m to 50 ?m), numerous, or fragile to assemble by conventional means. The disclosed technology provides for micro-LED displays and lighting elements assembled using micro-transfer printing technology. The micro-LEDs can be prepared on a native substrate and printed to a display substrate (e.g., plastic, metal, glass, or other materials), thereby obviating the manufacture of the micro-LEDs on the display substrate. In certain embodiments, the display substrate is transparent and/or flexible.
    Type: Application
    Filed: June 18, 2015
    Publication date: December 24, 2015
    Inventors: Christopher Bower, Matthew Meitl, David Gomez, Salvatore Bonafede, David Kneeburg, Alin Fecioru, Carl Prevatte
  • Publication number: 20150372052
    Abstract: The disclosed technology provides micro-assembled micro-LED displays and lighting elements using arrays of micro-LEDs that are too small (e.g., micro-LEDs with a width or diameter of 10 ?m to 50 ?m), numerous, or fragile to assemble by conventional means. The disclosed technology provides for micro-LED displays and lighting elements assembled using micro-transfer printing technology. The micro-LEDs can be prepared on a native substrate and printed to a display substrate (e.g., plastic, metal, glass, or other materials), thereby obviating the manufacture of the micro-LEDs on the display substrate. In certain embodiments, the display substrate is transparent and/or flexible.
    Type: Application
    Filed: June 18, 2015
    Publication date: December 24, 2015
    Inventors: Christopher Bower, Matthew Meitl, David Gomez, Salvatore Bonafede, David Kneeburg, Alin Fecioru, Carl Prevatte
  • Publication number: 20150372053
    Abstract: The disclosed technology provides micro-assembled micro-LED displays and lighting elements using arrays of micro-LEDs that are too small (e.g., micro-LEDs with a width or diameter of 10 ?m to 50 ?m), numerous, or fragile to assemble by conventional means. The disclosed technology provides for micro-LED displays and lighting elements assembled using micro-transfer printing technology. The micro-LEDs can be prepared on a native substrate and printed to a display substrate (e.g., plastic, metal, glass, or other materials), thereby obviating the manufacture of the micro-LEDs on the display substrate. In certain embodiments, the display substrate is transparent and/or flexible.
    Type: Application
    Filed: June 18, 2015
    Publication date: December 24, 2015
    Inventors: Christopher Bower, Matthew Meitl, David Gomez, Salvatore Bonafede, David Kneeburg, Alin Fecioru, Carl Prevatte
  • Publication number: 20150372051
    Abstract: The disclosed technology provides micro-assembled micro-LED displays and lighting elements using arrays of micro-LEDs that are too small (e.g., micro-LEDs with a width or diameter of 10 ?m to 50 ?m), numerous, or fragile to assemble by conventional means. The disclosed technology provides for micro-LED displays and lighting elements assembled using micro-transfer printing technology. The micro-LEDs can be prepared on a native substrate and printed to a display substrate (e.g., plastic, metal, glass, or other materials), thereby obviating the manufacture of the micro-LEDs on the display substrate. In certain embodiments, the display substrate is transparent and/or flexible.
    Type: Application
    Filed: June 18, 2015
    Publication date: December 24, 2015
    Inventors: Christopher Bower, Matthew Meitl, David Gomez, Salvatore Bonafede, David Kneeburg, Alin Fecioru, Carl Prevatte
  • Publication number: 20150371974
    Abstract: The disclosed technology provides micro-assembled micro-LED displays and lighting elements using arrays of micro-LEDs that are too small (e.g., micro-LEDs with a width or diameter of 10 ?m to 50 ?m), numerous, or fragile to assemble by conventional means. The disclosed technology provides for micro-LED displays and lighting elements assembled using micro-transfer printing technology. The micro-LEDs can be prepared on a native substrate and printed to a display substrate (e.g., plastic, metal, glass, or other materials), thereby obviating the manufacture of the micro-LEDs on the display substrate. In certain embodiments, the display substrate is transparent and/or flexible.
    Type: Application
    Filed: June 18, 2015
    Publication date: December 24, 2015
    Inventors: Christopher Bower, Matthew Meitl, David Gomez, Salvatore Bonafede, David Kneeburg, Alin Fecioru, Carl Prevatte
  • Publication number: 20130182333
    Abstract: Coating a machined mold with a flowable, hardenable polymer coating produces an optically-smooth finish and maintains sharpness in upward-pointing features. These procedures produce molds for highly efficient plano-convex silicone-on-glass lens arrays in a fast and inexpensive manner in which an end-mill defines the shape of a lens, and the coating produces its smoothness. End-mill machining and coating lens-shaped features in plates that have movable pins produce molds with eject features disposed inside features that form templates for lens elements without significantly reducing optical performance. Additionally, machining and coating plates that have movable inserts produce molds for lens arrays with reduced volume and one or several rings in each lens element.
    Type: Application
    Filed: July 21, 2011
    Publication date: July 18, 2013
    Inventors: Matthew Meitl, Rudolph Bukovnik, Etienne Menard, Wolfgang Wagner, David Kneeburg, Jimmy Mark
  • Patent number: 7429732
    Abstract: The preferred embodiments are directed to a method and apparatus of operating a scanning probe microscope (SPM) to perform sample measurements using a survey scan that is less than five lines, and more preferably two lines, to accurately locate a field of features of a sample. This is accomplished by selecting a step distance between adjacent lines of the survey scan that does not equal the pitch of the features in a direction orthogonal to the direction the survey scan traverses, i.e., does not equal the pitch of the features in the scan direction, XPO. The aspect ratio of the scans can also be modified to further improve sample throughput.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: September 30, 2008
    Assignee: Veeco Instruments Inc.
    Inventors: David A. Kneeburg, Rohit Jain, Jason R. Osborne, Wei Yao, Matthew T. Klonowski, Ingo Schmitz
  • Publication number: 20070075243
    Abstract: The preferred embodiments are directed to a method and apparatus of operating a scanning probe microscope (SPM) to perform sample measurements using a survey scan that is less than five lines, and more preferably two lines, to accurately locate a field of features of a sample. This is accomplished by selecting a step distance between adjacent lines of the survey scan that does not equal the pitch of the features in a direction orthogonal to the direction the survey scan traverses, i.e., does not equal the pitch of the features in the scan direction, XPO. The aspect ratio of the scans can also be modified to further improve sample throughput.
    Type: Application
    Filed: September 30, 2005
    Publication date: April 5, 2007
    Inventors: David Kneeburg, Rohit Jain, Jason Osborne, Wei Yao, Matthew Klonowski, Ingo Schmitz