Patents by Inventor David L. Hinkley

David L. Hinkley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9495487
    Abstract: Method for reducing the time needed to perform geophysical inversion by using simultaneous encoded sources in the simulation steps of the inversion process. The geophysical survey data are prepared by encoding (3) a group of source gathers (1), using for each gather a different encoding signature selected from a set (2) of non-equivalent encoding signatures. Then, the encoded gathers are summed (4) by summing all traces corresponding to the same receiver from each gather, resulting in a simultaneous encoded gather. (Alternatively, the geophysical data are acquired from simultaneously encoded sources.) The simulation steps needed for inversion are then calculated using a particular assumed velocity (or other physical property) model (5) and simultaneously activated encoded sources using the same encoding scheme used on the measured data. The result is an updated physical properties model (6) that may be further updated (7) by additional iterations.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: November 15, 2016
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Jerome R. Krebs, John E. Anderson, Ramesh Neelamani, Charles Jing, David L. Hinkley, Thomas A. Dickens
  • Patent number: 8812282
    Abstract: A method for efficient inversion of measured geophysical data from a subsurface region to prospect for hydrocarbons. Gathers of measured data (40) are encoded (60) using a set of non-equivalent encoding functions (30). Then all data records in each encoded gather that correspond to a single receiver are summed (60), repeating for each receiver to generate a simultaneous encoded gather (80). The method employs iterative, local optimization of a cost function to invert the encoded gathers of simultaneous source data. An adjoint method is used to calculate the gradients of the cost function needed for the local optimization process (100). The inverted data yields a physical properties model (110) of the subsurface region that, after iterative updating, can indicate presence of accumulations of hydrocarbons.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: August 19, 2014
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Jerome R. Krebs, David L. Hinkley
  • Publication number: 20130311149
    Abstract: Method for improving convergence in gradient-based iterative inversion of seismic data (101), especially advantageous for full wavefield inversion. The method comprises decomposing the gradient into two (or more) components (103), typically the migration component and the tomographic component, then weighting the components to compensate for unequal frequency content in the data (104), then recombining the weighted components (105), and using the recombined gradient to update (106) the physical properties model (102).
    Type: Application
    Filed: March 22, 2013
    Publication date: November 21, 2013
    Inventors: Yaxun Tang, Sunwoong Lee, Anatoly Baumstein, David L. Hinkley
  • Patent number: 8537638
    Abstract: Method for converting seismic data to obtain a subsurface model of, for example, bulk modulus or density. The gradient of an objective function is computed (103) using the seismic data (101) and a background subsurface medium model (102). The source and receiver illuminations are computed in the background model (104). The seismic resolution volume is computed using the velocities of the background model (105). The gradient is converted into the difference subsurface model parameters (106) using the source and receiver illumination, seismic resolution volume, and the background subsurface model. These same factors may be used to compensate seismic data migrated by reverse time migration, which can then be related to a subsurface bulk modulus model. For iterative inversion, the difference subsurface model parameters (106) are used as preconditioned gradients (107).
    Type: Grant
    Filed: January 4, 2011
    Date of Patent: September 17, 2013
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Sunwoong Lee, Jerome R. Krebs, John E. Anderson, Anatoly Baumstein, David L. Hinkley
  • Publication number: 20130191090
    Abstract: Method for reducing the time needed to perform geophysical inversion by using simultaneous encoded sources in the simulation steps of the inversion process. The geophysical survey data are prepared by encoding (3) a group of source gathers (1), using for each gather a different encoding signature selected from a set (2) of non-equivalent encoding signatures. Then, the encoded gathers are summed (4) by summing all traces corresponding to the same receiver from each gather, resulting in a simultaneous encoded gather. (Alternatively, the geophysical data are acquired from simultaneously encoded sources.) The simulation steps needed for inversion are then calculated using a particular assumed velocity (or other physical property) model (5) and simultaneously activated encoded sources using the same encoding scheme used on the measured data. The result is an updated physical properties model (6) that may be further updated (7) by additional iterations.
    Type: Application
    Filed: March 8, 2013
    Publication date: July 25, 2013
    Inventors: Jerome R. Krebs, John E. Anderson, Ramesh Neelamani, Charles Jing, David L. Hinkley, Thomas A. Dickens
  • Publication number: 20110194379
    Abstract: Method for converting seismic data to obtain a subsurface model of, for example, bulk modulus or density. The gradient of an objective function is computed (103) using the seismic data (101) and a background subsurface medium model (102). The source and receiver illuminations are computed in the background model (104). The seismic resolution volume is computed using the velocities of the background model (105). The gradient is converted into the difference subsurface model parameters (106) using the source and receiver illumination, seismic resolution volume, and the background subsurface model. These same factors may be used to compensate seismic data migrated by reverse time migration, which can then be related to a subsurface bulk modulus model. For iterative inversion, the difference subsurface model parameters (106) are used as preconditioned gradients (107).
    Type: Application
    Filed: January 4, 2011
    Publication date: August 11, 2011
    Inventors: Sunwoong Lee, Jerome R. Krebs, John E. Anderson, Anatoly Baumstein, David L. Hinkley
  • Publication number: 20110000678
    Abstract: A method for efficient inversion of measured geophysical data from a subsurface region to prospect for hydrocarbons. Gathers of measured data (40) are encoded (60) using a set of non-equivalent encoding functions (30). Then all data records in each encoded gather that correspond to a single receiver are summed (60), repeating for each receiver to generate a simultaneous encoded gather (80). The method employs iterative, local optimization of a cost function to invert the encoded gathers of simultaneous source data. An adjoint method is used to calculate the gradients of the cost function needed for the local optimization process (100). The inverted data yields a physical properties model (110) of the subsurface region that, after iterative updating, can indicate presence of accumulations of hydrocarbons.
    Type: Application
    Filed: January 26, 2009
    Publication date: January 6, 2011
    Inventors: Jerome R. Krebs, David L. Hinkley