Patents by Inventor David L. Hirschberg

David L. Hirschberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100330110
    Abstract: This invention provides a method for determining the antibody specificity profile in an individual. This specificity profile reveals the individual's immune response to multiple antigens and/or epitopes of autoantigens, allergens, graft antigens, etc. The antibody specificity profile is determined through the binding of patient samples comprising antibodies to the arrays. The array can comprises antigens and epitopes. The invention also provides the means and methods for determining antigen or epitope specificity profiles that can be used in the development of either generic and individualized diagnosis and treatment for immune related diseases, including autoimmune disease, allergy and graft rejection.
    Type: Application
    Filed: August 30, 2010
    Publication date: December 30, 2010
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: William H. Robinson, David L. Hirschberg, Lawrence Steinman, Pedro Jose Ruiz, Paul J. Utz, Hideki Garren
  • Patent number: 7785819
    Abstract: This invention provides a method for determining the antibody specificity profile in an individual. This specificity profile reveals the individual's immune response to multiple antigens and/or epitopes of autoantigens, allergens, graft antigens, etc. The antibody specificity profile is determined through the binding of patient samples comprising antibodies to the arrays. The array can comprises antigens and epitopes. The invention also provides the means and methods for determining antigen or epitope specificity profiles that can be used in the development of either generic and individualized diagnosis and treatment for immune related diseases, including autoimmune disease, allergy and graft rejection.
    Type: Grant
    Filed: April 10, 2002
    Date of Patent: August 31, 2010
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: William H. Robinson, David L. Hirschberg, Lawrence Steinman, Pedro Jose Ruiz, Paul J. Utz, Hideki Garren
  • Patent number: 7094537
    Abstract: The invention provides an apparatus and method for determining a signal produced by a micro array device. The apparatus provides an unstructured probe and structured probe. The unstructured probe binds to a target and provides a first signal that can be compared to a second signal produced by a structured probe. A more accurate level of intensity of the first signal can be determined by comparing to the second signal produced by the structured probe. A method for determining a more accurate level of signal intensity produced from the unstructured probes bound to the target is also disclosed.
    Type: Grant
    Filed: April 30, 2002
    Date of Patent: August 22, 2006
    Assignee: Agilent Technologies, Inc.
    Inventors: Eric M. Leproust, David L. Hirschberg, Glenda C. Delenstarr
  • Publication number: 20040142860
    Abstract: The present invention is directed to a central nervous system-derived heat stable immune privilege factor which exerts an inhibitory effect on macrophage migration and/or macrophage phagocytic activity. In addition, the factor exerts an inhibitory effect on the ability of macrophages and T cells to adhere to extracellular matrix and/or fibronectin. The invention is also directed to the isolation and methods for use of this immune privilege factor for the inhibition of inflammation in the central nervous system generally and at specific lesions in the central nervous system.
    Type: Application
    Filed: March 23, 2001
    Publication date: July 22, 2004
    Applicant: Yeda Research and Development Co. Ltd.
    Inventors: Michal Eisenbach-Schwartz, Pierre Beserman, David L. Hirschberg
  • Publication number: 20030203369
    Abstract: The invention provides an apparatus and method for determining a signal produced by a micro array device. The apparatus provides an unstructured probe and structured probe. The unstructured probe binds to a target and provides a first signal that can be compared to a second signal produced by a structured probe. A more accurate level of intensity of the first signal can be determined by comparing to the second signal produced by the structured probe. A method for determining a more accurate level of signal intensity produced from the unstructured probes bound to the target is also disclosed.
    Type: Application
    Filed: April 30, 2002
    Publication date: October 30, 2003
    Inventors: Eric M. Leproust, David L. Hirschberg, Glenda C. Delenstarr
  • Publication number: 20030003516
    Abstract: This invention provides a method for determining the antibody specificity profile in an individual. This specificity profile reveals the individual's immune response to multiple antigens and/or epitopes of autoantigens, allergens, graft antigens, etc. The antibody specificity profile is determined through the binding of patient samples comprising antibodies to the arrays. The array can comprises antigens and epitopes. The invention also provides the means and methods for determining antigen or epitope specificity profiles that can be used in the development of either generic and individualized diagnosis and treatment for immune related diseases, including autoimmune disease, allergy and graft rejection.
    Type: Application
    Filed: April 10, 2002
    Publication date: January 2, 2003
    Inventors: William H. Robinson, David L. Hirschberg, Lawrence Steinman, Pedro Jose Ruiz, Paul J. Utz, Hideki Garren
  • Patent number: 6267955
    Abstract: Methods and compositions are disclosed for the use of allogeneic mononuclear phagocytes to promote axonal regeneration in the central nervous system of a mammal. In one embodiment, allogeneic mononuclear phagocytes are cultured together with stimulatory tissue, such as skin, dermis or at least one nerve segment, and are subsequently administered into the central nervous system of a mammal at or near a site of injury or disease. In an alternative embodiment, autologous monocytes, preferably stimulated autologous monocytes, are administered into the central nervous system of a mammal at or near a site of injury or disease. CNS administration of mononuclear phagocytes may optionally be combined with administration of an adjuvant factor (e.g. aFGF) to the CNS, anti-inflammatory therapy of the mammal, or both. Methods for screening stimulatory tissue and cells and methods and compositions for cryopreserved allogeneic mononuclear phagocytes are also disclosed.
    Type: Grant
    Filed: March 11, 1998
    Date of Patent: July 31, 2001
    Assignee: Yeda Research and Development Co. Ltd.
    Inventors: Michal Eisenbach-Schwartz, Orly Spiegler, David L. Hirschberg
  • Patent number: 6126939
    Abstract: The present invention is directed to peptides of the formulas (i) Xaa-Yaa-Arg, wherein either Xaa is any amino acid residue and Yaa is Glu or Xaa is absent and Yaa is any amino acid residue with the exception of Pro; (ii) Arg-Yaa-Xaa, wherein either Xaa is any amino acid residue and Yaa is Glu or Xaa is absent and Yaa is any amino acid residue with the exception of Asn; (iii) Xaa-Arg-Yaa, wherein Xaa is any amino acid residue and Yaa is Glu; and (iv) Yaa-Arg-Xaa, wherein Xaa is any amino acid residue and Yaa is Glu, and to derivatives thereof, which exert an inhibitory effect on macrophage migration and/or macrophage phagocytic activity. In addition, the peptides and derivatives thereof exert an inhibitory effect on the ability of macrophages and T cells to adhere to extracellular matrix and/or fibronectin. The peptides and derivatives thereof exert an inhibitory effect on a humoral and/or cellular immune response.
    Type: Grant
    Filed: May 28, 1997
    Date of Patent: October 3, 2000
    Assignee: Yeda Research and Development Co. Ltd.
    Inventors: Michal Eisenbach-Schwartz, Pierre Beserman, David L. Hirschberg
  • Patent number: 6117424
    Abstract: Methods and compositions for the use of allogeneic mononuclear phagocytes to promote axonal regeneration in the central nervous system of a mammal are disclosed. In one embodiment, allogeneic mononuclear phagocytes are cultured together with stimulatory tissue, such as dermis or at least one nerve segment, and are subsequently administered into the central nervous system of a mammal at or near a site of injury or disease. In an alternative embodiment, autologous monocytes, preferably stimulated autologous monocytes, are administered into the central nervous system of a mammal at or near a site of injury or disease. Methods for identifying stimulatory tissue and cells and methods and compositions for cryopreserved allogeneic mononuclear phagocytes are also disclosed.
    Type: Grant
    Filed: March 14, 1997
    Date of Patent: September 12, 2000
    Assignee: Yeda Research and Development Co. Ltd.
    Inventors: Michal Eisenbach-Schwartz, Orly Spiegler, David L. Hirschberg
  • Patent number: 5800812
    Abstract: Methods and compositions for the use of allogeneic mononuclear phagocytes to promote axonal regeneration in the central nervous system of a mammal are disclosed. In one embodiment, allogeneic mononuclear phagocytes are cultured together with stimulatory tissue, such as dermis or at least one nerve segment, and are subsequently administered into the central nervous system of a mammal at or near a site of injury or disease. In an alternative embodiment, autologous monocytes, preferably stimulated autologous monocytes, are administered into the central nervous system of a mammal at or near a site of injury or disease. Methods for identifying stimulatory tissue and cells and methods and compositions for cryopreserved allogeneic mononuclear phagocytes are also disclosed.
    Type: Grant
    Filed: August 9, 1996
    Date of Patent: September 1, 1998
    Assignee: Yeda Research And Development Co. Ltd.
    Inventors: Michal Eisenbach-Schwartz, Orly Spiegler, David L. Hirschberg