Patents by Inventor David L. Kencke

David L. Kencke has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10878871
    Abstract: Spin transfer torque memory (STTM) devices incorporating an Insulator-Metal-Transition (IMT) device or at least one layer of Insulator-Metal-Transition (IMT) material are disclosed. The Insulator-Metal-Transition (IMT) device or at least one layer of Insulator-Metal-Transition (IMT) material are utilized for providing a spike current when the voltage across it exceeds the threshold voltage to reduce a critical current required for transfer torque induced magnetization switching.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: December 29, 2020
    Assignee: Intel Corporation
    Inventors: Brian S. Doyle, Prashant Majhi, Kaan Oguz, Kevin P. O'Brien, Abhishek A. Sharma, David L. Kencke
  • Publication number: 20200357449
    Abstract: Spin transfer torque memory (STTM) devices incorporating an Insulator-Metal-Transition (IMT) device or at least one layer of Insulator-Metal-Transition (IMT) material are disclosed. The Insulator-Metal-Transition (IMT) device or at least one layer of Insulator-Metal-Transition (IMT) material are utilized for providing a spike current when the voltage across it exceeds the threshold voltage to reduce a critical current required for transfer torque induced magnetization switching.
    Type: Application
    Filed: September 28, 2017
    Publication date: November 12, 2020
    Inventors: Brian S. DOYLE, Prashant MAJHI, Kaan OGUZ, Kevin P. O'BRIEN, Abhishek A. SHARMA, David L. KENCKE
  • Patent number: 10832847
    Abstract: An embodiment includes an apparatus comprising: a substrate; a magnetic tunnel junction (MTJ), on the substrate, comprising a fixed layer, a free layer, and a dielectric layer between the fixed and free layers; and a first synthetic anti-ferromagnetic (SAF) layer, a second SAF layer, and an intermediate layer, which includes a non-magnetic metal, between the first and second SAF layers; wherein the first SAF layer includes a Heusler alloy. Other embodiments are described herein.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: November 10, 2020
    Assignee: Intel Corporation
    Inventors: Brian S. Doyle, Kaan Oguz, Kevin P. O'Brien, David L. Kencke, Charles C. Kuo, Mark L. Doczy, Satyarth Suri, Robert S. Chau
  • Patent number: 10707409
    Abstract: Techniques are disclosed for fabricating a self-aligned spin-transfer torque memory (STTM) device with a dot-contacted free magnetic layer. In some embodiments, the disclosed STTM device includes a first dielectric spacer covering sidewalls of an electrically conductive hardmask layer that is patterned to provide an electronic contact for the STTM's free magnetic layer. The hardmask contact can be narrower than the free magnetic layer. The first dielectric spacer can be utilized in patterning the STTM's fixed magnetic layer. In some embodiments, the STTM further includes an optional second dielectric spacer covering sidewalls of its free magnetic layer. The second dielectric spacer can be utilized in patterning the STTM's fixed magnetic layer and may serve, at least in part, to protect the sidewalls of the free magnetic layer from redepositing of etch byproducts during such patterning, thereby preventing electrical shorting between the fixed magnetic layer and the free magnetic layer.
    Type: Grant
    Filed: January 29, 2018
    Date of Patent: July 7, 2020
    Assignee: Intel Corporation
    Inventors: Charles C. Kuo, Kaan Oguz, Brian S. Doyle, Mark L. Doczy, David L. Kencke, Satyarth Suri, Robert S. Chau
  • Patent number: 10580973
    Abstract: Techniques are disclosed for forming integrated circuit structures including a magnetic tunnel junction (MTJ), such as spin-transfer torque memory (STTM) devices, having magnetic contacts. The techniques include incorporating an additional magnetic layer (e.g., a layer that is similar or identical to that of the magnetic contact layer) such that the additional magnetic layer is coupled antiferromagnetically (or in a substantially antiparallel manner). The additional magnetic layer can help balance the magnetic field of the magnetic contact layer to limit parasitic fringing fields that would otherwise be caused by the magnetic contact layer. The additional magnetic layer may be antiferromagnetically coupled to the magnetic contact layer by, for example, including a nonmagnetic spacer layer between the two magnetic layers, thereby creating a synthetic antiferromagnet (SAF).
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: March 3, 2020
    Assignee: INTEL CORPORATION
    Inventors: Brian S. Doyle, Kaan Oguz, Charles C. Kuo, Mark L. Doczy, Satyarth Suri, David L. Kencke, Robert S. Chau, Roksana Golizadeh Mojarad
  • Publication number: 20200051724
    Abstract: An embodiment includes an apparatus comprising: a substrate; a magnetic tunnel junction (MTJ), on the substrate, comprising a fixed layer, a free layer, and a dielectric layer between the fixed and free layers; and a first synthetic anti-ferromagnetic (SAF) layer, a second SAF layer, and an intermediate layer, which includes a non-magnetic metal, between the first and second SAF layers; wherein the first SAF layer includes a Heusler alloy. Other embodiments are described herein.
    Type: Application
    Filed: June 26, 2015
    Publication date: February 13, 2020
    Inventors: Brian S. Doyle, Kaan Oguz, Kevin P. O'Brien, David L. Kencke, Charles C. Kuo, Mark L. Doczy, Satyarth Suri, Robert S. Chau
  • Patent number: 10522739
    Abstract: An embodiment includes an apparatus comprising: a substrate; and a perpendicular magnetic tunnel junction (pMTJ) comprising a fixed layer and first and second free layers; wherein (a) the first free layer includes Cobalt (Co), Iron (Fe), and Boron (B), and (b) the second free layer is epitaxial and includes Manganese (Mn) and Gallium (Ga). Other embodiments are described herein.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: December 31, 2019
    Assignee: Intel Corporation
    Inventors: Kaan Oguz, Kevin P. O'Brien, Brian S. Doyle, David L. Kencke, Charles C. Kuo, Robert S. Chau
  • Patent number: 10468489
    Abstract: Techniques and mechanisms to provide insulation for a component of an integrated circuit device. In an embodiment, structures of a circuit component are formed in or on a first side of a semiconductor substrate, the structures including a first doped region, a second doped region and a third region between the first doped region and the second doped region. The substrate has formed therein an insulation structure, proximate to the circuit component structures, which is laterally constrained to extend only partially from a location under the circuit component toward an edge of the substrate. In another embodiment, a second side of the substrate—opposite the first side—is exposed by thinning to form the substrate from a wafer. Such thinning enables subsequent back side processing to form a recess in the second side, and to deposit the insulation structure in the recess.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: November 5, 2019
    Assignee: Intel Corporation
    Inventors: Aaron D. Lilak, Uygar E. Avci, David L. Kencke, Patrick Morrow, Kerryann Foley, Stephen M. Cea, Rishabh Mehandru
  • Patent number: 10340443
    Abstract: An embodiment includes an apparatus comprising: first and second electrodes on a substrate; a perpendicular magnetic tunnel junction (pMTJ), between the first and second electrodes, comprising a dielectric layer between a fixed layer and a free layer; and an additional dielectric layer directly contacting first and second metal layers; wherein (a) the first metal layer includes an active metal and the second metal includes an inert metal, and (b) the second metal layer directly contacts the free layer. Other embodiments are described herein.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: July 2, 2019
    Assignee: Intel Corporation
    Inventors: Brian S. Doyle, Kaan Oguz, Kevin P. O'Brien, David L. Kencke, Elijah V. Karpov, Charles C. Kuo, Mark L. Doczy, Satyarth Suri, Robert S. Chau, Niloy Mukherjee, Prashant Majhi
  • Publication number: 20190109281
    Abstract: Techniques are disclosed for forming integrated circuit structures including a magnetic tunnel junction (MTJ), such as spin-transfer torque memory (STTM) devices, having magnetic contacts. The techniques include incorporating an additional magnetic layer (e.g., a layer that is similar or identical to that of the magnetic contact layer) such that the additional magnetic layer is coupled antiferromagnetically (or in a substantially antiparallel manner). The additional magnetic layer can help balance the magnetic field of the magnetic contact layer to limit parasitic fringing fields that would otherwise be caused by the magnetic contact layer. The additional magnetic layer may be antiferromagnetically coupled to the magnetic contact layer by, for example, including a nonmagnetic spacer layer between the two magnetic layers, thereby creating a synthetic antiferromagnet (SAF).
    Type: Application
    Filed: December 10, 2018
    Publication date: April 11, 2019
    Applicant: INTEL CORPORATION
    Inventors: BRIAN S. DOYLE, KAAN OGUZ, CHARLES C. KUO, MARK L. DOCZY, SATYARTH SURI, DAVID L. KENCKE, ROBERT S. CHAU, ROKSANA GOLIZADEH MOJARAD
  • Patent number: 10158065
    Abstract: Techniques are disclosed for forming integrated circuit structures including a magnetic tunnel junction (MTJ), such as spin-transfer torque memory (STTM) devices, having magnetic contacts. The techniques include incorporating an additional magnetic layer (e.g., a layer that is similar or identical to that of the magnetic contact layer) such that the additional magnetic layer is coupled antiferromagnetically (or in a substantially antiparallel manner). The additional magnetic layer can help balance the magnetic field of the magnetic contact layer to limit parasitic fringing fields that would otherwise be caused by the magnetic contact layer. The additional magnetic layer may be antiferromagnetically coupled to the magnetic contact layer by, for example, including a nonmagnetic spacer layer between the two magnetic layers, thereby creating a synthetic antiferromagnet (SAF).
    Type: Grant
    Filed: July 7, 2014
    Date of Patent: December 18, 2018
    Assignee: INTEL CORPORATION
    Inventors: Brian S. Doyle, Kaan Oguz, Charles C. Kuo, Mark L. Doczy, Satyarth Suri, David L. Kencke, Robert S. Chau, Roksana Golizadeh Mojarad
  • Publication number: 20180323367
    Abstract: An embodiment includes an apparatus comprising: first and second electrodes on a substrate; a perpendicular magnetic tunnel junction (pMTJ), between the first and second electrodes, comprising a dielectric layer between a fixed layer and a free layer; and an additional dielectric layer directly contacting first and second metal layers; wherein (a) the first metal layer includes an active metal and the second metal includes an inert metal, and (b) the second metal layer directly contacts the free layer. Other embodiments are described herein.
    Type: Application
    Filed: June 26, 2015
    Publication date: November 8, 2018
    Inventors: Brian S. Doyle, Kaan Oguz, Kevin P. O'Brien, David L. Kencke, Elijah V. Karpov, Charles C. Kuo, Mark L. Doczy, Satyarth Suri, Robert S. Chau, Niloy Mukherjee, Prashant Majhi
  • Publication number: 20180301619
    Abstract: An embodiment includes an apparatus comprising: a substrate; and a perpendicular magnetic tunnel junction (pMTJ) comprising a fixed layer and first and second free layers; wherein (a) the first free layer includes Cobalt (Co), Iron (Fe), and Boron (B), and (b) the second free layer is epitaxial and includes Manganese (Mn) and Gallium (Ga). Other embodiments are described herein.
    Type: Application
    Filed: June 26, 2015
    Publication date: October 18, 2018
    Inventors: Kaan Oguz, Kevin P. O'Brien, Brian S. Doyle, David L. Kencke, Charles C. Kuo, Robert S. Chau
  • Publication number: 20180226478
    Abstract: Techniques and mechanisms to provide insulation for a component of an integrated circuit device. In an embodiment, structures of a circuit component are formed in or on a first side of a semiconductor substrate, the structures including a first doped region, a second doped region and a third region between the first doped region and the second doped region. The substrate has formed therein an insulation structure, proximate to the circuit component structures, which is laterally constrained to extend only partially from a location under the circuit component toward an edge of the substrate. In another embodiment, a second side of the substrate—opposite the first side—is exposed by thinning to form the substrate from a wafer. Such thinning enables subsequent back side processing to form a recess in the second side, and to deposit the insulation structure in the recess.
    Type: Application
    Filed: September 25, 2015
    Publication date: August 9, 2018
    Inventors: Aaron D. LILAK, Uygar E. AVCI, David L. KENCKE, Patrick MORROW, Kerryann FOLEY, Stephen M. CEA, Rishabh MEHANDRU
  • Publication number: 20180166625
    Abstract: Techniques are disclosed for fabricating a self-aligned spin-transfer torque memory (STTM) device with a dot-contacted free magnetic layer. In some embodiments, the disclosed STTM device includes a first dielectric spacer covering sidewalls of an electrically conductive hardmask layer that is patterned to provide an electronic contact for the STTM's free magnetic layer. The hardmask contact can be narrower than the free magnetic layer. The first dielectric spacer can be utilized in patterning the STTM's fixed magnetic layer. In some embodiments, the STTM further includes an optional second dielectric spacer covering sidewalls of its free magnetic layer. The second dielectric spacer can be utilized in patterning the STTM's fixed magnetic layer and may serve, at least in part, to protect the sidewalls of the free magnetic layer from redepositing of etch byproducts during such patterning, thereby preventing electrical shorting between the fixed magnetic layer and the free magnetic layer.
    Type: Application
    Filed: January 29, 2018
    Publication date: June 14, 2018
    Applicant: INTEL CORPORATION
    Inventors: Charles C. Kuo, Kaan Oguz, Brian S. Doyle, Mark L. Doczy, David L. Kencke, Satyarth Suri, Robert S. Chau
  • Patent number: 9882121
    Abstract: Techniques are disclosed for fabricating a self-aligned spin-transfer torque memory (STTM) device with a dot-contacted free magnetic layer. In some embodiments, the disclosed STTM device includes a first dielectric spacer covering sidewalls of an electrically conductive hardmask layer that is patterned to provide an electronic contact for the STTM's free magnetic layer. The hardmask contact can be narrower than the free magnetic layer. The first dielectric spacer can be utilized in patterning the STTM's fixed magnetic layer. In some embodiments, the STTM further includes an optional second dielectric spacer covering sidewalls of its free magnetic layer. The second dielectric spacer can be utilized in patterning the STTM's fixed magnetic layer and may serve, at least in part, to protect the sidewalls of the free magnetic layer from redepositing of etch byproducts during such patterning, thereby preventing electrical shorting between the fixed magnetic layer and the free magnetic layer.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: January 30, 2018
    Assignee: INTEL CORPORATION
    Inventors: Charles C. Kuo, Kaan Oguz, Brian S. Doyle, Mark L. Doczy, David L. Kencke, Satyarth Suri, Robert S. Chau
  • Patent number: 9825095
    Abstract: An insulating layer is deposited over a transistor structure. The transistor structure comprises a gate electrode over a device layer on a substrate. The transistor structure comprises a first contact region and a second contact region on the device layer at opposite sides of the gate electrode. A trench is formed in the first insulating layer over the first contact region. A metal-insulator phase transition material layer with a S-shaped IV characteristic is deposited in the trench or in the via of the metallization layer above on the source side.
    Type: Grant
    Filed: August 25, 2016
    Date of Patent: November 21, 2017
    Assignee: Intel Corporation
    Inventors: Ravi Pillarisetty, Brian S. Doyle, Elijah V. Karpov, David L. Kencke, Uday Shah, Charles C. Kuo, Robert S. Chau
  • Publication number: 20170323928
    Abstract: The present disclosure relates to the fabrication of spin transfer torque memory elements for non-volatile microelectronic memory devices. The spin transfer torque memory element may include a magnetic tunneling junction connected with specifically sized and/or shaped fixed magnetic layer that can be positioned in a specific location adjacent a free magnetic layer. The shaped fixed magnetic layer may concentrate current in the free magnetic layer, which may result in a reduction in the critical current needed to switch a bit cell in the spin transfer torque memory element.
    Type: Application
    Filed: July 24, 2017
    Publication date: November 9, 2017
    Applicant: INTEL CORPORATION
    Inventors: Brian S. Doyle, David L. Kencke, Charles C. Kuo, Dmitri E. Nikonov, Robert S. Chau
  • Patent number: 9793467
    Abstract: A method of centering a contact on a layer of a magnetic memory device. In one embodiment, a spacers is formed in an opening surrounding the upper layer and the contact is formed within the spacer. The spacer is formed from an anisotropically etched conformal layer deposited on an upper surface and into the opening.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: October 17, 2017
    Assignee: Intel Corporation
    Inventors: Brian S. Doyle, Yong Ju Lee, Charles C. Kuo, David L. Kencke, Kaan Oguz, Roksana Golizadeh Mojard, Uday Shah
  • Patent number: 9779794
    Abstract: Techniques are disclosed for forming a spin-transfer torque memory (STTM) element having an annular contact to reduce critical current requirements. The techniques reduce critical current requirements for a given magnetic tunnel junction (MTJ), because the annular contact reduces contact size and increases local current density, thereby reducing the current needed to switch the direction of the free magnetic layer of the MTJ. In some cases, the annular contact surrounds at least a portion of an insulator layer that prevents the passage of current. In such cases, current flows through the annular contact and around the insulator layer to increase the local current density before flowing through the free magnetic layer. The insulator layer may comprise a dielectric material, and in some cases, is a tunnel material, such as magnesium oxide (MgO). In some cases, a critical current reduction of at least 10% is achieved for a given MTJ.
    Type: Grant
    Filed: March 26, 2014
    Date of Patent: October 3, 2017
    Assignee: INTEL CORPORATION
    Inventors: Brian S. Doyle, David L. Kencke, Kaan Oguz, Mark L. Doczy, Satyarth Suri, Robert S. Chau, Charles C. Kuo, Roksana Golizadeh Mojarad