Patents by Inventor David L. Perschbacher

David L. Perschbacher has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9731137
    Abstract: The current technology is relevant to a system having a programming device capable of communication with an implantable medical device, where the programming device is configured to identify a patient condition comprising the patient's inability to exercise to a desired capacity, configured to notify a clinical user of the identified condition and configured to identify a therapy appropriate for the identified condition.
    Type: Grant
    Filed: July 1, 2013
    Date of Patent: August 15, 2017
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: James O. Gilkerson, Kenneth P. Hoyme, James R. Kalgren, David L. Perschbacher, Les N. Peterson
  • Patent number: 9707401
    Abstract: An apparatus comprises a cardiac signal sensing circuit configured to sense a plurality of intrinsic cardiac signals using a plurality of cardiac pacing sites, a heart sound sensing circuit, a stimulus circuit configured to provide an electrical cardiac pacing stimulus to the plurality of pacing sites, and a control circuit electrically coupled to the cardiac signal sensing circuit and the stimulus circuit. The control circuit includes a pacing site locating circuit configured to generate an indication of a preferred pacing site as one of a) a subset of the respective cardiac pacing sites selected using the intrinsic ventricular activation time interval value, from which subset the preferred pacing site is selected using the heart sound characteristic value; or b) a subset of the respective cardiac pacing sites selected using the heart sound characteristic value, from which subset the preferred pacing site is selected using the ventricular activation time interval value.
    Type: Grant
    Filed: July 29, 2015
    Date of Patent: July 18, 2017
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Pramodsingh Hirasingh Thakur, Yinghong Yu, David L. Perschbacher
  • Patent number: 9662504
    Abstract: Monitoring physiological parameter using an implantable physiological monitor in order to detect a condition predictive of a possible future pathological episode and collecting additional physiological data associated with the condition predictive of a possible future pathological episode. Monitoring another physiological parameter in order to detect a condition indicative of the beginning of a present pathological episode and collecting additional pathological data in response to the condition. Determining that the condition predictive of a future episode and the condition indicative of a present episode are associated and, in response thereto, storing all the collected physiological data.
    Type: Grant
    Filed: May 2, 2016
    Date of Patent: May 30, 2017
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Yanting Dong, David L. Perschbacher, Jeffrey E. Stahmann, Dan Li, Deepa Mahajan
  • Publication number: 20170127965
    Abstract: An example of a system may include a sensing circuit to sense a cardiac signal indicative of atrial and ventricular depolarizations and an atrial fibrillation (AF) detection circuit to detect AF. The AF detection circuit may include a detector and a detection enhancer. The detector may be configured to detect the ventricular depolarizations using the cardiac signal, measure ventricular intervals, and detect AF using the ventricular intervals. The detection enhancer may be configured to generate atrial detection windows each being a time interval prior to each of the detected ventricular depolarizations, compute an atrial activity score using a rolling average of portions of the cardiac signal within the atrial detection windows, and verify the detection of the AF using the atrial activity score and an atrial activity threshold. The atrial activity score is a measure of consistency between a relationship between the atrial depolarizations and the ventricular depolarizations.
    Type: Application
    Filed: November 2, 2016
    Publication date: May 11, 2017
    Inventors: Jonathan Walter Krueger, Deepa Mahajan, David L. Perschbacher
  • Publication number: 20170027462
    Abstract: An apparatus includes a sensing circuit configured to generate a sensed physiological signal representative of cardiac activity of a subject, an arrhythmia detection circuit, a control circuit, and a memory. The arrhythmia detection circuit detects an episode of atrial fibrillation (AF) in the sensed cardiac signal using a first AF detection criterion, and detects the episode of AF using a second AF detection criterion. The first AF detection criterion has greater sensitivity to AF detection than the second AF detection criterion, and the second AF detection criterion has greater specificity to AF detection than the first AF detection criterion. The control circuit initiates storing of sampled values of a segment of the cardiac signal that includes the episode of AF when the episode of AF is detected by both the first AF detection criterion and the second AF detection criterion.
    Type: Application
    Filed: June 7, 2016
    Publication date: February 2, 2017
    Inventors: Deepa Mahajan, David L. Perschbacher, Keith L. Herrmann
  • Publication number: 20170001020
    Abstract: A system includes a pulse generator including a can electrode and a lead couplable to the pulse generator, the lead including a distal coil electrode and a proximal coil electrode, wherein both of the coil electrodes are electrically uncoupled from the can electrode such that a unipolar sensing vector is provided between at least one of the coil electrodes and the can electrode.
    Type: Application
    Filed: September 14, 2016
    Publication date: January 5, 2017
    Inventors: David L. Perschbacher, James O. Gilkerson, Ron A. Balczewski
  • Publication number: 20170001011
    Abstract: Systems and methods for evaluating multiple candidate electrostimulation vectors for use in therapeutic cardiac stimulation are disclosed. The system can include a programmable electrostimulator circuit for delivering electrostimulation to one or more sites of a heart according to multiple candidate electrostimulation vectors. One or more physiologic sensors can detect resulting physiologic responses to the electrostimulation. A processor circuit can generate categories of indicators including therapy efficacy indicators, battery longevity indicators, or complication indicators using the sensed physiologic responses. The candidate electrostimulation vectors can be ranked according to the categories of indicators in specified orders.
    Type: Application
    Filed: June 20, 2016
    Publication date: January 5, 2017
    Inventors: Qi An, Yinghong Yu, Pramodsingh Hirasingh Thakur, David L. Perschbacher, Jason Humphrey, Yi Zhang
  • Patent number: 9510764
    Abstract: An apparatus comprises an implantable cardiac signal sensing circuit configured to provide a sensed depolarization signal from a ventricle and a processor. The processor includes a signal analyzer module and a tachyarrhythmia discrimination module. The signal analyzer module is configured to determine a measure of stability of ventricular (V-V) depolarization intervals using the depolarization signal, and determine a rate of change of the measure of stability. The tachyarrhythmia discrimination module is configured to detect an episode of tachyarrhythmia using the depolarization signal, determine whether the detected tachyarrhythmia is indicative of atrial tachyarrhythmia using the determined rate of change, and provide the determination to a user or process.
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: December 6, 2016
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Dan Li, David L. Perschbacher, Yanting Dong, Julie Stephenson
  • Publication number: 20160346552
    Abstract: An apparatus comprises a stimulus circuit, a switch circuit, and a control circuit. The stimulus circuit is configured to provide electrical pulse stimulation to the plurality of electrodes. The switch circuit is configured to electrically couple different combinations of the electrodes to the stimulus circuit. The control circuit is to configure a stimulation vector that includes a first vector electrode and a plurality of other electrodes electrically coupled together to form a second combined vector electrode. The control circuit includes a capture detection sub-circuit configured to determine individual capture stimulation thresholds between the first vector electrode and each single electrode of the combined vector electrode. The control circuit is configured to determine a capture stimulation threshold of the stimulation vector using the determined individual capture thresholds.
    Type: Application
    Filed: April 27, 2016
    Publication date: December 1, 2016
    Inventors: David J. Ternes, William J. Linder, Sunipa Saha, David L. Perschbacher
  • Publication number: 20160287115
    Abstract: An apparatus includes a sensing circuit configured to generate a sensed physiological signal representative of cardiac activity of a subject, and an arrhythmia detection circuit. The arrhythmia detection circuit is configured to monitor information corresponding to ventricular depolarization (V-V) intervals using the sensed physiological signal; determine a V-V interval distribution; determine a heart rate density index (HRDI) as a portion of samples of the V-V interval distribution corresponding to a V-V interval occurring most often in the distribution; and generate an indication of atrial fibrillation (AF) using the HRDI.
    Type: Application
    Filed: March 28, 2016
    Publication date: October 6, 2016
    Inventors: David L. Perschbacher, Deepa Mahajan, Howard D. Simms, JR.
  • Patent number: 9440088
    Abstract: The technology disclosed herein relates to a method for lead analysis for an implanted medical device. A summary data record is retrieved associated with one or more episodes from an implanted medical device through a communication module. Episode selection criteria are applied to the summary data record by a processing module. One or more episode data records are retrieved from the implanted medical device for one or more episodes for which the episode selection criteria was satisfied. Noise detection criteria are applied to the episode data record. A notification module is configured to generate an alert if the noise detection criteria are satisfied.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: September 13, 2016
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: David L. Perschbacher, Deepa Mahajan, Arjun D. Sharma, Jeffry V. Marshik
  • Publication number: 20160243370
    Abstract: Monitoring physiological parameter using an implantable physiological monitor in order to detect a condition predictive of a possible future pathological episode and collecting additional physiological data associated with the condition predictive of a possible future pathological episode. Monitoring another physiological parameter in order to detect a condition indicative of the beginning of a present pathological episode and collecting additional pathological data in response to the condition. Determining that the condition predictive of a future episode and the condition indicative of a present episode are associated and, in response thereto, storing all the collected physiological data.
    Type: Application
    Filed: May 2, 2016
    Publication date: August 25, 2016
    Inventors: Yanting Dong, David L. Perschbacher, Jeffrey E. Stahmann, Dan Li, Deepa Mahajan
  • Publication number: 20160220139
    Abstract: Systems and methods for detecting a target physiologic event and storing physiologic information associated with the detected physiologic event are disclosed. A system can receive a physiologic signal obtained from a subject, and detect the target physiologic event using a first portion of the received physiologic signal. The system can confirm the target physiologic event using a second portion of the received physiologic signal. If the target physiologic event is confirmed, the system can store physiologic information associated with the confirmed target physiologic event in a memory.
    Type: Application
    Filed: January 27, 2016
    Publication date: August 4, 2016
    Inventors: Deepa Mahajan, David L. Perschbacher
  • Publication number: 20160220137
    Abstract: An arrhythmia classification system receives cardiac data from an implantable medical device, performs automatic adjudication of each cardiac arrhythmia episode indicated by the cardiac data, and generates episode data representative of information associated with the episode. The episode data include at least an episode classification resulting from the automatic adjudication of the episode and a confidence level in the episode classification. In one embodiment, the episode data further include key features rationalizing the automatic adjudication of the episode.
    Type: Application
    Filed: April 11, 2016
    Publication date: August 4, 2016
    Inventors: Deepa Mahajan, Christopher Pulliam, Yanting Dong, David L. Perschbacher
  • Patent number: 9357935
    Abstract: The current technology is relevant to a system having an implantable medical device, where the system is configured to identify a patient condition comprising cardiac dysynchrony, configured to notify a clinical user of the identified condition and configured to identify a therapy appropriate for the identified condition.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: June 7, 2016
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: James O. Gilkerson, Kenneth P. Hoyme, James R. Kalgren, David L. Perschbacher, Les N. Peterson
  • Publication number: 20160135707
    Abstract: An apparatus comprises an implantable cardiac signal sensing circuit configured to provide a sensed depolarization signal from a ventricle and a processor. The processor includes a signal analyzer module and a tachyarrhythmia discrimination module. The signal analyzer module is configured to determine a measure of stability of ventricular (V?V) depolarization intervals using the depolarization signal, and determine a rate of change of the measure of stability. The tachyarrhythmia discrimination module is configured to detect an episode of tachyarrhythmia using the depolarization signal, determine whether the detected tachyarrhythmia is indicative of atrial tachyarrhythmia using the determined rate of change, and provide the determination to a user or process.
    Type: Application
    Filed: January 27, 2016
    Publication date: May 19, 2016
    Inventors: Dan Li, David L. Perschbacher, Yanting Dong, Julie Stephenson
  • Patent number: 9339658
    Abstract: Monitoring physiological parameter using an implantable physiological monitor in order to detect a condition predictive of a possible future pathological episode and collecting additional physiological data associated with the condition predictive of a possible future pathological episode. Monitoring another physiological parameter in order to detect a condition indicative of the beginning of a present pathological episode and collecting additional pathological data in response to the condition. Determining that the condition predictive of a future episode and the condition indicative of a present episode are associated and, in response thereto, storing all the collected physiological data.
    Type: Grant
    Filed: February 5, 2014
    Date of Patent: May 17, 2016
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Yanting Dong, David L. Perschbacher, Jeffrey E. Stahmann, Dan Li, Deepa Mahajan
  • Patent number: 9307920
    Abstract: An arrhythmia classification system receives cardiac data from an implantable medical device, performs automatic adjudication of each cardiac arrhythmia episode indicated by the cardiac data, and generates episode data representative of information associated with the episode. The episode data include at least an episode classification resulting from the automatic adjudication of the episode and a confidence level in the episode classification. In one embodiment, the episode data further include key features rationalizing the automatic adjudication of the episode.
    Type: Grant
    Filed: April 16, 2013
    Date of Patent: April 12, 2016
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Deepa Mahajan, Christopher Pulliam, Yanting Dong, David L. Perschbacher
  • Publication number: 20160045125
    Abstract: Atrial fibrillation information can be determined from ventricular information or a ventricular location, such as using ventricular rate variability. An ambulatory medical device can receive indications of pairs of first and second ventricular rate changes of three temporally adjacent ventricular heart beats. A first count of instances of the pairs meeting a combined rate change magnitude characteristic and a second count of instances of the pairs in which both of the first and second ventricular rate changes are negative can be used to provide atrial fibrillation information.
    Type: Application
    Filed: August 13, 2015
    Publication date: February 18, 2016
    Inventors: Jonathan Walter Krueger, Deepa Mahajan, David L. Perschbacher
  • Patent number: 9259586
    Abstract: A system and method of programming a cardiac rhythm management device (CRM device) using an external programming device are described, where the user is presented with a list of highly-safe parameter adjustments. Input is received from the user selecting one or more of the highly-safe parameter adjustments. A programming session is initiated wherein the programming device establishes communication with the CRM device, and transmits the selected one or more highly-safe parameter adjustments to the CRM device.
    Type: Grant
    Filed: September 15, 2009
    Date of Patent: February 16, 2016
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Kenneth P. Hoyme, James O. Gilkerson, James Kalgren, David L. Perschbacher