Patents by Inventor David L. Ramage

David L. Ramage has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150246866
    Abstract: Processes for producing acetic acid and determining corrosion therein are described herein. The processes generally include contacting methanol and carbon monoxide in the presence of a liquid reaction medium under carbonylation conditions sufficient to form acetic acid, wherein the liquid reaction medium includes: a carbonylation catalyst selected from rhodium catalysts, iridium catalysts and palladium catalysts; from 1 wt. % to 14 wt. % water; and one or more, in-situ generated derivatives of the one or more additives and combinations thereof; wherein the one or more additives are independently selected from non-benzoyl containing pentavalent phosphine oxides, compound mixtures of at least four phosphine oxides and pentavalent aryl or alkaryl phosphine oxides including one or more benzoyl groups; and recovering acetic acid from the process.
    Type: Application
    Filed: February 24, 2015
    Publication date: September 3, 2015
    Inventors: Noel C. Hallinan, Brian A. Salisbury, Daniel F. White, David L. Ramage
  • Patent number: 8013082
    Abstract: The invention provides a process of polymerizing ethylene and at least one ?-olefin, said process comprises polymerizing the ethylene and the at least one ?-olefin in the presence of 5-ethylidene-2-norbornene, which comprises low levels of impurities, as determined by the absorbances at the following wavelengths: 320 nm and 343 nm. The invention also provides a method of increasing the catalysts efficiency, and a method of determining the expected catalyst efficiency, each in a polymerization of ethylene and at least one ?-olefin in the presence of the 5-ethylidene-2-norbornene, which comprises low levels of impurities, as determined by the absorbances at the above wavelengths. The invention further provides a method of purifying 5-ethylidene-2-norbornene to form a purified 5-ethylidene-2-norbornene, which comprises low levels of impurities, as determined by the absorbances of the above wavelengths.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: September 6, 2011
    Assignee: Dow Global Technologies LLC
    Inventors: David L. Ramage, Sarah L. Martin
  • Publication number: 20090312511
    Abstract: The invention provides a process of polymerizing ethylene and at least one ?-olefin, said process comprises polymerizing the ethylene and the at least one ?-olefin in the presence of 5-ethylidene-2-norbornene, which comprises low levels of impurities, as determined by the absorbances at the following wavelengths: 320 nm and 343 nm. The invention also provides a method of increasing the catalysts efficiency, and a method of determining the expected catalyst efficiency, each in a polymerization of ethylene and at least one ?-olefin in the presence of the 5-ethylidene-2-norbornene, which comprises low levels of impurities, as determined by the absorbances at the above wavelengths. The invention further provides a method of purifying 5-ethylidene-2-norbornene to form a purified 5-ethylidene-2-norbornene, which comprises low levels of impurities, as determined by the absorbances of the above wavelengths.
    Type: Application
    Filed: July 13, 2007
    Publication date: December 17, 2009
    Applicant: DOW GLOBAL TECHNOLOGIES INC.
    Inventors: David L. Ramage, Sarah L. Martin
  • Publication number: 20040087743
    Abstract: A process for producing polymer particles in a gas phase polymerization reaction using a group 4 metal complex containing delocalized &pgr;-electrons and optionally a flow aid.
    Type: Application
    Filed: August 22, 2003
    Publication date: May 6, 2004
    Inventors: Xinlai Bai, Maria A Apecetche, Kevin J Cann, David L Ramage, Natarajan Muruganandam, Ardenhu Sen, Matthew J Fedec, Woo Min Song, David M Rebhan, Albert L Widmar