Patents by Inventor David L. Sullivan
David L. Sullivan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10865167Abstract: A process for hydrocracking 2,4-dimethylpentane and/or 2,2,3-trimethylbutane can comprise: contacting a hydrocracking feed stream in the presence of hydrogen with a hydrocracking catalyst, wherein the hydrocracking feed stream comprises at least 0.5 wt % of 2,4-dimethylpentane and/or 2,2,3-trimethylbutane, based upon a total weight of the hydrocracking feed stream; and wherein the hydrocracking catalyst comprises a medium pore zeolite having a pore size of 5-6 A and a silica to alumina molar ratio of 20-75; preferably the hydrocracking catalyst comprises a medium pore zeolite having a pore size of 5-6 A and a silica to alumina molar ratio of 20-75 and a large pore zeolite having a pore size of 6-8 A and a silica to alumina molar ratio of 10-80, wherein the hydrogenation metal is deposited on the medium pore zeolite and the large pore zeolite.Type: GrantFiled: September 7, 2017Date of Patent: December 15, 2020Assignee: SABIC GLOBAL TECHNOLOGIES B.V.Inventors: Ashim Kumar Ghosh, Alla Khanmamedova, Scott A. Stevenson, Luis Aramburo, David L. Sullivan, Cong Nguyen
-
Publication number: 20190375696Abstract: A process for hydrocracking 2,4-dimethylpentane and/or 2,2,3-trimethylbutane can comprise: contacting a hydrocracking feed stream in the presence of hydrogen with a hydrocracking catalyst, wherein the hydrocracking feed stream comprises at least 0.5 wt % of 2,4-dimethylpentane and/or 2,2,3-trimethylbutane, based upon a total weight of the hydrocracking feed stream; and wherein the hydrocracking catalyst comprises a medium pore zeolite having a pore size of 5-6 A and a silica to alumina molar ratio of 20-75; preferably the hydrocracking catalyst comprises a medium pore zeolite having a pore size of 5-6 A and a silica to alumina molar ratio of 20-75 and a large pore zeolite having a pore size of 6-8 A and a silica to alumina molar ratio of 10-80, wherein the hydrogenation metal is deposited on the medium pore zeolite and the large pore zeolite.Type: ApplicationFiled: September 7, 2017Publication date: December 12, 2019Inventors: Ashim Kumar Ghosh, Alla Khanmamedova, Scott A. Stevenson, Luis Aramburo, David L. Sullivan, Cong Nguyen
-
Patent number: 10106474Abstract: The disclosure is for a process for producing propylene and hexene (along with ethylene, pentenes, product butenes, heptenes and octenes) by metathesis from butenes (iso-, 1- and cis and trans 2-) and pentenes and then aromatizing the hexenes (along with higher olefins, such as heptenes and octenes) to benzene (along with toluene, xylenes, ethylbenzene and styrene). Since the desired products of the metathesis reaction are propylene and hexene, the feed to the metathesis reaction has a molar ratio for 1-butene:2-butene which favors production of propylene and 3-hexene with the concentration of hexenes and higher olefins in the metathesis product being up to 30 mole %. An isomerization reactor may be used to obtain the desired molar ratio of 1-butene:2-butene for the feed composition into the metathesis reactor. After the metathesis reaction, of hexene and higher olefins are separated for aromatization to benzene and other aromatics.Type: GrantFiled: February 4, 2014Date of Patent: October 23, 2018Assignee: SAUDI BASIC INDUSTRIES CORPORATIONInventors: Jaap W. van Hal, Scott A. Stevenson, Jim Allman, David L. Sullivan, Travis Conant
-
Publication number: 20140148629Abstract: The disclosure is for a process for producing propylene and hexene (along with ethylene, pentenes, product butenes, heptenes and octenes) by metathesis from butenes (iso-, 1- and cis and trans 2-) and pentenes and then aromatizing the hexenes (along with higher olefins, such as heptenes and octenes) to benzene (along with toluene, xylenes, ethylbenzene and styrene). Since the desired products of the metathesis reaction are propylene and hexene, the feed to the metathesis reaction has a molar ratio for 1-butene:2-butene which favors production of propylene and 3-hexene with the concentration of hexenes and higher olefins in the metathesis product being up to 30 mole %. An isomerization reactor may be used to obtain the desired molar ratio of 1-butene:2-butene for the feed composition into the metathesis reactor. After the metathesis reaction, of hexene and higher olefins are separated for aromatization to benzene and other aromatics.Type: ApplicationFiled: February 4, 2014Publication date: May 29, 2014Applicant: SAUDI BASIC INDUSTRIES CORPORATIONInventors: Jaap W. van Hal, Scott A. Stevenson, Jim Allman, David L. Sullivan, Travis Conant
-
High molybdenum mixed metal oxide catalysts for the production of unsaturated aldehydes from olefins
Patent number: 8722940Abstract: A catalyst for the oxidation of an olefin to an unsaturated aldehyde comprising a mixed metal oxide having the formula (I): MoaWbMcM?dM?eZfOg??(I) where M represents trivalent metals, M? represents divalent metals, M? represents monovalent metals, Z represents elements in the form of an oxide, a, b, c, d, e, f and g are numbers, and where the catalyst has an anion to cation molar (ACM) ratio greater than 1.00 and less than 2.00 and an M? to M molar ratio between 1.95 and 2.15.Type: GrantFiled: March 1, 2012Date of Patent: May 13, 2014Assignee: Saudi Basic Industries CorporationInventors: James W. Kauffman, David L. Sullivan, Joe D. Dostal -
Patent number: 8722950Abstract: The invention is for a process for producing propylene and hexene (along with ethylene, pentenes, product butenes, heptenes and octenes) by metathesis from butenes (iso-, 1- and cis and trans 2-) and pentenes and then aromatizing the hexenes (along with higher olefins, such as heptenes and octenes) to benzene (along with toluene, xylenes, ethylbenzene and styrene). Since the desired products of the metathesis reaction are propylene and hexene, the feed to the metathesis reaction has a molar ratio for 1-butene:2-butene which favors production of propylene and 3-hexene with the concentration of hexenes and higher olefins in the metathesis product being up to 30 mole %. An isomerization reactor may be used to obtain the desired molar ratio of 1-butene:2-butene for the feed composition into the metathesis reactor. After the metathesis reaction, of hexene and higher olefins are separated for aromatization to benzene and other aromatics.Type: GrantFiled: April 26, 2010Date of Patent: May 13, 2014Assignee: Saudi Basic Industries CorporationInventors: Jaap W. van Hal, Scott A. Stevenson, Jim Allman, David L. Sullivan, Travis Conant
-
HIGH MOLYBDENUM MIXED METAL OXIDE CATALYSTS FOR THE PRODUCTION OF UNSATURATED ALDEHYDES FROM OLEFINS
Publication number: 20130231507Abstract: A catalyst for the oxidation of an olefin to an unsaturated aldehyde comprising a mixed metal oxide having the formula (I): MoaWbMcM?dM?eZfOg??(I) where M represents trivalent metals, M? represents divalent metals, M? represents monovalent metals, Z represents elements in the form of an oxide, a, b, c, d, e, f and g are numbers, and where the catalyst has an anion to cation molar (ACM) ratio greater than 1.00 and less than 2.00 and an M? to M molar ratio between 1.95 and 2.15.Type: ApplicationFiled: March 1, 2012Publication date: September 5, 2013Inventors: James W. Kauffman, David L. Sullivan, Joe D. Dostal -
Publication number: 20110263917Abstract: The invention is for a process for producing propylene and hexene (along with ethylene, pentenes, product butenes, heptenes and octenes) by metathesis from butenes (iso-, 1- and cis and trans 2-) and pentenes and then aromatizing the hexenes (along with higher olefins, such as heptenes and octenes) to benzene (along with toluene, xylenes, ethylbenzene and styrene). Since the desired products of the metathesis reaction are propylene and hexene, the feed to the metathesis reaction has a molar ratio for 1-butene:2-butene which favors production of propylene and 3-hexene with the concentration of hexenes and higher olefins in the metathesis product being up to 30 mole %. An isomerization reactor may be used to obtain the desired molar ratio of 1-butene:2-butene for the feed composition into the metathesis reactor. After the metathesis reaction, of hexene and higher olefins are separated for aromatization to benzene and other aromatics.Type: ApplicationFiled: April 26, 2010Publication date: October 27, 2011Applicant: Saudi Basic Industries CorporationInventors: Jaap W. Van Hal, Scott A. Stevenson, Jim Allman, David L. Sullivan, Travis R. Conant
-
Patent number: 5435073Abstract: A method and apparatus for aligning fixed and movable shafts includes members fastened to each shaft to extend substantially normal to the axis thereof and with indicators on the free ends thereof. Rigid members couple the free ends so that misalignment will be reflected in the indicators and necessary movement to align the shafts calculated from a simple formula.Type: GrantFiled: April 5, 1993Date of Patent: July 25, 1995Assignee: Texaco Inc.Inventor: David L. Sullivan
-
Patent number: 5026461Abstract: A process for the production of dodecanedioic acid by oxidation of cyclododecene using a two phase system in which ruthenium tetroxide serves as the oxidizing agent in the organic phase, and ruthenium tetroxide is regenerated in the second phase, an aqueous phase containing cerium ions in the plus 4 state. The cerium plus 4 ions may be regenerated by electrolytic oxidation in a separate step.Type: GrantFiled: January 19, 1990Date of Patent: June 25, 1991Assignee: E. I. Du Pont de Nemours and CompanyInventors: Darwin D. Davis, David L. Sullivan