Patents by Inventor David L. Tennent

David L. Tennent has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8062881
    Abstract: Hydrophobic polymer surfaces whose level of protein binding is less than about 50-80 ng/cm2 are achieved by: (1) applying a coating solution composed of a solvent and a non-ionic surfactant having a HLB number of less than 5 to the surface; and (2) drying the surface to remove the solvent and thereby bring the surfactant into direct contact with the hydrophobic polymer. The combination of a low HLB number and the drying step have been found to produce low binding surfaces which can withstand multiple washes with water and/or protein-containing solutions Alternatively, the low binding surfaces can be produced by applying the non-ionic surfactant to the mold surfaces which contact molten polymer and form the polymer into a desired shape, e.g., into a multi-well plate, a pipette tip, or the like. Further, the low binding surfaces may be produced by incorporating non-soluble, non-ionic surfactants having an HLB number of less than or equal to 10 into a polymer blend prior to molding the article.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: November 22, 2011
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Edward John Fewkes, Jr., James Arthur Griffin, Frances M. Smith, David L. Tennent
  • Publication number: 20100280174
    Abstract: Hydrophobic polymer surfaces whose level of protein binding is less than about 50-80 ng/cm2 are achieved by: (1) applying a coating solution composed of a solvent and a non-ionic surfactant having a HLB number of less than 5 to the surface; and (2) drying the surface to remove the solvent and thereby bring the surfactant into direct contact with the hydrophobic polymer. The combination of a low HLB number and the drying step have been found to produce low binding surfaces which can withstand multiple washes with water and/or protein-containing solutions Alternatively, the low binding surfaces can be produced by applying the non-ionic surfactant to the mold surfaces which contact molten polymer and fault the polymer into a desired shape, e.g., into a multi-well plate, a pipette tip, or the like. Further, the low binding surfaces may be produced by incorporating non-soluble, non-ionic surfactants having an HLB number of less than or equal to 10 into a polymer blend prior to molding the article.
    Type: Application
    Filed: July 8, 2010
    Publication date: November 4, 2010
    Inventors: Dana Craig Bookbinder, Edward John Fewkes, JR., James Arthur Griffin, Frances M. Smith, David L. Tennent
  • Patent number: 7776572
    Abstract: Hydrophobic polymer surfaces whose level of protein binding is less than about 50-80 ng/cm2 are achieved by: (1) applying a coating solution composed of a solvent and a non-ionic surfactant having a HLB number of less than 5 to the surface; and (2) drying the surface to remove the solvent and thereby bring the surfactant into direct contact with the hydrophobic polymer. The combination of a low HLB number and the drying step have been found to produce low binding surfaces which can withstand multiple washes with water and/or protein-containing solutions Alternatively, the low binding surfaces can be produced by applying the non-ionic surfactant to the mold surfaces which contact molten polymer and form the polymer into a desired shape, e.g., into a multi-well plate, a pipette tip, or the like. Further, the low binding surfaces may be produced by incorporating non-soluble, non-ionic surfactants having an HLB number of less than or equal to 10 into a polymer blend prior to molding the article.
    Type: Grant
    Filed: February 16, 2007
    Date of Patent: August 17, 2010
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Edward John Fewkes, Jr., James Arthur Griffin, Frances M. Smith, David L. Tennent
  • Publication number: 20080145280
    Abstract: Hydrophobic polymer surfaces whose level of protein binding is less than about 50-80 ng/cm2 are achieved by: (1) applying a coating solution composed of a solvent and a non-ionic surfactant having a HLB number of less than 5 to the surface; and (2) drying the surface to remove the solvent and thereby bring the surfactant into direct contact with the hydrophobic polymer. The combination of a low HLB number and the drying step have been found to produce low binding surfaces which can withstand multiple washes with water and/or protein-containing solutions. Alternatively, the low binding surfaces can be produced by applying the non-ionic surfactant to the mold surfaces which contact molten polymer and form the polymer into a desired shape, e.g., into a multi-well plate, a pipette tip, or the like. Further, the low binding surfaces may be produced by incorporating non-soluble, non-ionic surfactants having an HLB number of less than or equal to 10 into a polymer blend prior to molding the article.
    Type: Application
    Filed: October 30, 2007
    Publication date: June 19, 2008
    Inventors: Dana Craig Bookbinder, Edward John Fewkes, James Arthur Griffin, Frances M. Smith, David L. Tennent
  • Patent number: 7312057
    Abstract: Hydrophobic polymer surfaces whose level of protein binding is less than about 50-80 ng/cm2 are achieved by: (1) applying a coating solution composed of a solvent and a non-ionic surfactant having a HLB number of less than 5 to the surface; and (2) drying the surface to remove the solvent and thereby bring the surfactant into direct contact with the hydrophobic polymer. The combination of a low HLB number and the drying step have been found to produce low binding surfaces which can withstand multiple washes with water and/or protein-containing solutions Alternatively, the low binding surfaces can be produced by applying the non-ionic surfactant to the mold surfaces which contact molten polymer and form the polymer into a desired shape, e.g., into a multi-well plate, a pipette tip, or the like. Further, the low binding surfaces may be produced by incorporating non-soluble, non-ionic surfactants having an HLB number of less than or equal to 10 into a polymer blend prior to molding the article.
    Type: Grant
    Filed: March 3, 2003
    Date of Patent: December 25, 2007
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Edward John Fewkes, Jr., James Arthur Griffin, Frances M. Smith, David L. Tennent
  • Patent number: 6732551
    Abstract: A method for making silica includes delivering a silica precursor comprising a pseudohalogen to a conversion site and passing the silica precursor through a flame to produce silica soot.
    Type: Grant
    Filed: May 4, 2001
    Date of Patent: May 11, 2004
    Assignee: Corning Incorporated
    Inventors: David L. Tennent, Joseph M. Whalen
  • Patent number: 6698247
    Abstract: A method for making silica includes delivering a silica precursor comprising a perfluorinated group to a conversion site and passing the silica precursor through a conversion flame to produce silica soot.
    Type: Grant
    Filed: May 4, 2001
    Date of Patent: March 2, 2004
    Assignee: Corning Incorporated
    Inventors: David L. Tennent, Joseph M. Whalen
  • Publication number: 20030199065
    Abstract: Hydrophobic polymer surfaces whose level of protein binding is less than about 50-80 ng/cm2 are achieved by: (1) applying a coating solution composed of a solvent and a non-ionic surfactant having a HLB number of less than 5 to the surface; and (2) drying the surface to remove the solvent and thereby bring the surfactant into direct contact with the hydrophobic polymer. The combination of a low HLB number and the drying step have been found to produce low binding surfaces which can withstand multiple washes with water and/or protein-containing solutions Alternatively, the low binding surfaces can be produced by applying the non-ionic surfactant to the mold surfaces which contact molten polymer and form the polymer into a desired shape, e.g., into a multi-well plate, a pipette tip, or the like. Further, the low binding surfaces may be produced by incorporating non-soluble, non-ionic surfactants having an HLB number of less than or equal to 10 into a polymer blend prior to molding the article.
    Type: Application
    Filed: March 3, 2003
    Publication date: October 23, 2003
    Applicant: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Edward John Fewkes, James Arthur Griffin, Frances M. Smith, David L. Tennent
  • Patent number: 6565789
    Abstract: Hydrophobic polymer surfaces whose level of protein binding is less than about 50-80 ng/cm2 are achieved by: (1) applying a coating solution composed of a solvent and a non-ionic surfactant having a HLB number of less than 5 to the surface; and (2) drying the surface to remove the solvent and thereby bring the surfactant into direct contact with the hydrophobic polymer. The combination of a low HLB number and the drying step have been found to produce low binding surfaces which can withstand multiple washes with water and/or protein-containing solutions. Alternatively, the low binding surfaces can be produced by applying the non-ionic surfactant to the mold surfaces which contact molten polymer and form the polymer into a desired shape, e.g., into a multi-well plate, a pipette tip, or the like. Further, the low binding surfaces may be produced by incorporating non-soluble, non-ionic surfactants having an HLB number of less than or equal to 10 into a polymer blend prior to molding the article.
    Type: Grant
    Filed: February 18, 2000
    Date of Patent: May 20, 2003
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Edward John Fewkes, Jr., James Arthur Griffin, Frances M. Smith, David L. Tennent
  • Publication number: 20030073067
    Abstract: Hydrophobic polymer surfaces whose level of protein binding is less than about 50-80 ng/cm2 are achieved by: (1) applying a coating solution composed of a solvent and a non-ionic surfactant having a HLB number of less than 5 to the surface; and (2) drying the surface to remove the solvent and thereby bring the surfactant into direct contact with the hydrophobic polymer. The combination of a low HLB number and the drying step have been found to produce low binding surfaces which can withstand multiple washes with water and/or protein-containing solutions Alternatively, the low binding surfaces can be produced by applying the non-ionic surfactant to the mold surfaces which contact molten polymer and form the polymer into a desired shape, e.g., into a multi-well plate, a pipette tip, or the like. Further, the low binding surfaces may be produced by incorporating non-soluble, non-ionic surfactants having an HLB number of less than or equal to 10 into a polymer blend prior to molding the article.
    Type: Application
    Filed: February 18, 2000
    Publication date: April 17, 2003
    Inventors: Dana Craig Bookfinder, Edward John Fewkes, James Arthur Griffin, Frances M. Smith, David L. Tennent
  • Publication number: 20020162357
    Abstract: A method for making silica includes delivering a silica precursor comprising a perfluorinated group to a conversion site and passing the silica precursor through a conversion flame to produce silica soot.
    Type: Application
    Filed: May 4, 2001
    Publication date: November 7, 2002
    Inventors: David L. Tennent, Joseph M. Whalen
  • Publication number: 20020162359
    Abstract: A method for making silica includes delivering a silica precursor comprising a pseudohalogen to a conversion site and passing the silica precursor through a flame to produce silica soot.
    Type: Application
    Filed: May 4, 2001
    Publication date: November 7, 2002
    Inventors: David L. Tennent, Joseph M. Whalen
  • Patent number: 6379746
    Abstract: Methods for temporarily protecting a surface of a glass article by coating the surface are provided. The methods include forming a stable, hydrophobic, removable film on the surface at the end of the glass manufacturing process while the glass is still at an elevated temperature (e.g., above 175° C.). The film reduces chip adhesion to the surface as a result of cutting and grinding. After cutting and grinding, the film is removed allowing the glass to be used in such processes as the manufacture of liquid crystal displays (LCDs).
    Type: Grant
    Filed: January 31, 2000
    Date of Patent: April 30, 2002
    Assignee: Corning Incorporated
    Inventors: William Birch, Dana C. Bookbinder, Alain R. E. Carre, David L. Tennent
  • Patent number: 6319664
    Abstract: Hydrophobic polymer surfaces whose level of protein binding is less than about 50-80 ng/cm2 are achieved by: (1) applying to a hydrophobic polymer surface a coating solution composed of a solvent and a non-ionic surfactant having a HLB number of less than 5 and at least one hydrophilic element which can extend into an aqueous solution; and (2) drying the surface to remove the solvent and thereby bring the surfactant into direct contact with the hydrophobic polymer. The combination of a low HLB number and the drying step have been found to produce low binding surfaces which can withstand multiple washes with water and/or protein-containing solutions. Alternatively, the low binding surfaces can be produced by applying the non-ionic surfactant to mold surfaces which contact molten polymer and form the polymer into a desired shape, e.g., into a multi-well plate, a pipette tip, or the like.
    Type: Grant
    Filed: February 18, 2000
    Date of Patent: November 20, 2001
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Edward John Fewkes, Jr., James Arthur Griffin, Frances M. Smith, David L. Tennent
  • Patent number: 6233972
    Abstract: A method of providing a protective layer for a glass sheet. The protective layer provided by depositing a solution of a polymer and water on a glass sheet at a temperature high enough to provide a layer that is insoluble in water below a temperature of about 20° C. The layer is soluble in water at a temperature above about 60° C., so that the protective layer can be removed by rinsing in hot water.
    Type: Grant
    Filed: August 24, 1999
    Date of Patent: May 22, 2001
    Assignee: Corning Incorporated
    Inventors: Michelle R. Foster, David L. Tennent
  • Patent number: 6093559
    Abstract: Hydrophobic polymer surfaces whose level of protein binding is less than about 50-80 ng/cm.sup.2 are achieved by: (1) applying to a hydrophobic polymer surface a coating solution composed of a solvent and a non-ionic surfactant having a HLB number of less than 5 and at least one hydrophilic element which can extend into an aqueous solution; and (2) drying the surface to remove the solvent and thereby bring the surfactant into direct contact with the hydrophobic polymer. The combination of a low HLB number and the drying step have been found to produce low binding surfaces which can withstand multiple washes with water and/or protein-containing solutions. Alternatively, the low binding surfaces can be produced by applying the non-ionic surfactant to mold surfaces which contact molten polymer and form the polymer into a desired shape, e.g., into a multi-well plate, a pipette tip, or the like.
    Type: Grant
    Filed: August 26, 1997
    Date of Patent: July 25, 2000
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Edward John Fewkes, Jr., James Arthur Griffin, Frances M. Smith, David L. Tennent
  • Patent number: 4892857
    Abstract: An apparatus for use in liquid-phase, gas-phase and mixed-phase reactions is disclosed for providing an efficient flow-through design within which results a low pressure drop. The apparatus may be used as a catalyst or electrocatalyst and consists essentially of a ceramic substrate having thin walls with open porosity wherein said walls define a plurality of cells extending substantially longitudinally parallel through-and-through the substrate. The substrate includes an electrically conductive layer, having a resistivity of no greater than about 100 ohm-cm. The apparatus exhibits an improved structural geometry and provides greater meniscus control.
    Type: Grant
    Filed: May 20, 1987
    Date of Patent: January 9, 1990
    Assignee: Corning Incorporated
    Inventors: David L. Tennent, Gerald D. Fong, Christine L. Hoaglin
  • Patent number: 4522924
    Abstract: The present invention relates to an immobilized enzyme composite having a mica carrier. More particularly, the composite comprises a mixture of an enzyme and a water-swelling mica selected from fluorohectorite, boron fluorophlogopite, hydroxyl boron phlogopite and solid solutions of at least one mica and a structurally compatible species selected from talc, fluorotalc, polylithonite, fluoropolylithonite, phlogopite, and fluorophlogopite.
    Type: Grant
    Filed: March 29, 1984
    Date of Patent: June 11, 1985
    Assignee: Corning Glass Works
    Inventors: David L. Tennent, Bhavender P. Sharma