Patents by Inventor David Larkin

David Larkin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240147086
    Abstract: The present disclosure relates to a method of processing image data at an apparatus having an image sensor, a first statistics data module and a first processor component, the method comprising: obtaining, at the first statistics data module from the image sensor, first image sensor data; generating, at the first statistics data module, statistics data of a first type derived, at least in part, from the first image sensor data; processing, at the first processor component, the statistics data of the first type to determine whether or not an event is detected in a scene; generating, at the first processor component, an event signal when an event is detected.
    Type: Application
    Filed: October 20, 2023
    Publication date: May 2, 2024
    Applicant: Arm Limited
    Inventors: Daniel Larkin, David Hanwell
  • Patent number: 11941734
    Abstract: A robotic system may comprise a first robotic arm operatively coupleable to a first tool. The first tool has a first working end. The system may also comprise an image capture device, a display, and a processor. The processor may be configured to cause an image of a work site, which was captured by the image capture device from a perspective of an image reference frame, to be displayed on the display. The image of the work site includes an image of the first working end of the first tool. The processor may also determine a position of the first working end of the first tool in the image of the work site and render a tool information overlay at the position of the first working end of the first tool in the image of the work site. The tool information overlay visually indicates state information for the first tool. The processor may also change the tool information overlay while the first tool is in a first operational state by changing a brightness of the tool information overlay.
    Type: Grant
    Filed: March 26, 2021
    Date of Patent: March 26, 2024
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Brandon D. Itkowitz, Simon P. DiMaio, Daniel J. Halabe, Christopher J. Hasser, Brian David Hoffman, David Q. Larkin, Catherine J. Mohr, Paul W. Mohr, Tao Zhao, Wenyi Zhao
  • Patent number: 11878185
    Abstract: Described herein are multi-leaf collimators that comprise leaf drive mechanisms. The leaf drive mechanisms can be used in binary multi-leaf collimators used in emission-guided radiation therapy. One variation of a multi-leaf collimator comprises a pneumatics-based leaf drive mechanism. Another variation of a multi-leaf collimator comprises a spring-based leaf drive mechanism having a spring resonator.
    Type: Grant
    Filed: December 30, 2021
    Date of Patent: January 23, 2024
    Assignee: RefleXion Medical, Inc.
    Inventors: Eugene Duval, David Meer, Layton Hale, David Larkin
  • Publication number: 20230067048
    Abstract: This application relates to methods for delivering radiation to a positron-emitting target within a subject under continuous PET guidance. Instead of directing radiation at a collinear path along each detected positron line-of-response (LOR), the methods generally include detecting a pattern of LORs that intersect the target. In response to the pattern, radiation may be delivered along paths that are not necessarily collinear to any of the LORs. Methods for further modifying radiation delivery as well as the detected LOR population are also described.
    Type: Application
    Filed: June 30, 2022
    Publication date: March 2, 2023
    Inventors: Yevgen VORONENKO, Rostem BASSALOW, Peter OLCOTT, Brent HARPER, David LARKIN
  • Patent number: 11406846
    Abstract: This application relates to methods for delivering radiation to a positron-emitting target within a subject under continuous PET guidance. Instead of directing radiation at a collinear path along each detected positron line-of-response (LOR), the methods generally include detecting a pattern of LORs that intersect the target. In response to the pattern, radiation may be delivered along paths that are not necessarily collinear to any of the LORs. Methods for further modifying radiation delivery as well as the detected LOR population are also described.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: August 9, 2022
    Assignee: RefleXion Medical, Inc.
    Inventors: Yevgen Voronenko, Rostem Bassalow, Peter Olcott, Brent Harper, David Larkin
  • Publication number: 20220193451
    Abstract: Described herein are multi-leaf collimators that comprise leaf drive mechanisms. The leaf drive mechanisms can be used in binary multi-leaf collimators used in emission-guided radiation therapy. One variation of a multi-leaf collimator comprises a pneumatics-based leaf drive mechanism. Another variation of a multi-leaf collimator comprises a spring-based leaf drive mechanism having a spring resonator.
    Type: Application
    Filed: December 30, 2021
    Publication date: June 23, 2022
    Inventors: Eugene DUVAL, Layton HALE, David LARKIN
  • Publication number: 20220183781
    Abstract: Techniques for operating a kinematic structure by manual motion of a link coupled to the kinematic structure include a system having a kinematic structure configured to support an instrument and a processor. The processor is configured to place the system in a clutching mode; transition the system from the clutching mode to a set-up mode in response to detecting a joint operation of the kinematic structure; while in the set-up mode, determine an input displacement of a link from an initial positional relationship relative to a portion of the kinematic structure to a displaced positional relationship relative to the portion of the kinematic structure; and while in the set-up mode and in response to the determined input displacement, drive the kinematic structure so that the link returns toward the initial positional relationship relative to the portion of the kinematic structure.
    Type: Application
    Filed: March 2, 2022
    Publication date: June 16, 2022
    Inventors: Paul GRIFFITHS, Paul MOHR, Nitish SWARUP, Michael COSTA, David LARKIN, Thomas COOPER, Michael HANUSCHIK
  • Patent number: 11298200
    Abstract: Techniques for operating a kinematic structure by manual motion of a link coupled to the kinematic structure include a system having a kinematic structure configured to support an instrument and a processor. The processor is configured to place the system in a clutching mode, transition the system from the clutching mode to a set-up mode in response to detecting a joint operation of the kinematic structure, establish a desired reference location of a link relative to a portion of the kinematic structure, detect an error between an actual reference location of the link relative to the portion and the desired reference location of the link, and drive the kinematic structure so as to decrease the error. The link is distal to the portion on the kinematic structure. The error is due to manual movement of the link.
    Type: Grant
    Filed: April 7, 2020
    Date of Patent: April 12, 2022
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Paul Griffiths, Paul Mohr, Nitish Swarup, Michael Costa, David Larkin, Thomas Cooper, Michael Hanuschik
  • Patent number: 11285340
    Abstract: Described herein are multi-leaf collimators that comprise leaf drive mechanisms. The leaf drive mechanisms can be used in binary multi-leaf collimators used in emission-guided radiation therapy. One variation of a multi-leaf collimator comprises a pneumatics-based leaf drive mechanism. Another variation of a multi-leaf collimator comprises a spring-based leaf drive mechanism having a spring resonator.
    Type: Grant
    Filed: November 7, 2019
    Date of Patent: March 29, 2022
    Assignee: RefleXion Medical, Inc.
    Inventors: David Larkin, William Knapp, Layton Hale
  • Publication number: 20200368557
    Abstract: Disclosed herein are radiation therapy systems and methods. These radiation therapy systems and methods are used for emission-guided radiation therapy, where gamma rays from markers or tracers that are localized to patient tumor regions are detected and used to direct radiation to the tumor. The radiation therapy systems described herein comprise a gantry comprising a rotatable ring coupled to a stationary frame via a rotating mechanism such that the rotatable ring rotates up to about 70 RPM, a radiation source (e.g., MV X-ray source) mounted on the rotatable ring, and one or more PET detectors mounted on the rotatable ring.
    Type: Application
    Filed: May 29, 2020
    Publication date: November 26, 2020
    Inventors: Brent HARPER, Robert WIGGERS, David LARKIN, David MEER, David NETT, Rostem BASSALOW, Peter OLCOTT, Chris JULIAN, Brent DOLAN, William Jorge PEARCE
  • Publication number: 20200229883
    Abstract: Techniques for operating a kinematic structure by manual motion of a link coupled to the kinematic structure include a system having a kinematic structure configured to support an instrument and a processor. The processor is configured to place the system in a clutching mode, transition the system from the clutching mode to a set-up mode in response to detecting a joint operation of the kinematic structure, establish a desired reference location of a link relative to a portion of the kinematic structure, detect an error between an actual reference location of the link relative to the portion and the desired reference location of the link, and drive the kinematic structure so as to decrease the error. The link is distal to the portion on the kinematic structure. The error is due to manual movement of the link.
    Type: Application
    Filed: April 7, 2020
    Publication date: July 23, 2020
    Inventors: Paul GRIFFITHS, Paul MOHR, Nitish SWARUP, Michael COSTA, David LARKIN, Thomas COOPER, Michael HANUSCHIK
  • Patent number: 10695586
    Abstract: Disclosed herein are radiation therapy systems and methods. These radiation therapy systems and methods are used for emission-guided radiation therapy, where gamma rays from markers or tracers that are localized to patient tumor regions are detected and used to direct radiation to the tumor. The radiation therapy systems described herein comprise a gantry comprising a rotatable ring coupled to a stationary frame via a rotating mechanism such that the rotatable ring rotates up to about 70 RPM, a radiation source (e.g., MV X-ray source) mounted on the rotatable ring, and one or more PET detectors mounted on the rotatable ring.
    Type: Grant
    Filed: November 15, 2017
    Date of Patent: June 30, 2020
    Assignee: RefleXion Medical, Inc.
    Inventors: Brent Harper, Robert Wiggers, David Larkin, David Meer, David Nett, Rostem Bassalow, Peter Olcott, Chris Julian, Brent Dolan, William Jorge Pearce
  • Publication number: 20200164230
    Abstract: Described herein are multi-leaf collimators that comprise leaf drive mechanisms. The leaf drive mechanisms can be used in binary multi-leaf collimators used in emission-guided radiation therapy. One variation of a multi-leaf collimator comprises a pneumatics-based leaf drive mechanism. Another variation of a multi-leaf collimator comprises a spring-based leaf drive mechanism having a spring resonator.
    Type: Application
    Filed: November 7, 2019
    Publication date: May 28, 2020
    Inventors: David LARKIN, William KNAPP, Layton HALE
  • Patent number: 10646297
    Abstract: Robotic and/or surgical devices, systems, and methods include a manipulator configured to be mounted to a cannula and a processor. The processor is configured to detect a mounting state of the cannula, detect an input indicating the system is to be in a set-up mode, and inhibit transition of the system to the set-up mode in response to the detected mounting state. In some embodiments, detecting the input indicating the system is to be in the set-up mode includes detecting an activation of a dedicated input button. In some embodiments, detecting the input indicating the system is to be in the set-up mode comprises detecting a joint operation of a first kinematic structure coupling the manipulator with a platform that is supported by a second kinematic structure.
    Type: Grant
    Filed: May 21, 2018
    Date of Patent: May 12, 2020
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Paul Griffiths, Paul Mohr, Nitish Swarup, Michael Costa, David Larkin, Thomas Cooper, Michael Hanuschik
  • Patent number: 10500416
    Abstract: Described herein are multi-leaf collimators that comprise leaf drive mechanisms. The leaf drive mechanisms can be used in binary multi-leaf collimators used in emission-guided radiation therapy. One variation of a multi-leaf collimator comprises a pneumatics-based leaf drive mechanism. Another variation of a multi-leaf collimator comprises a spring-based leaf drive mechanism having a spring resonator.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: December 10, 2019
    Assignee: RefleXion Medical, Inc.
    Inventors: David Larkin, William Knapp, Layton Hale, David Meer
  • Publication number: 20190262630
    Abstract: This application relates to methods for delivering radiation to a positron-emitting target within a subject under continuous PET guidance. Instead of directing radiation at a collinear path along each detected positron line-of-response (LOR), the methods generally include detecting a pattern of LORs that intersect the target. In response to the pattern, radiation may be delivered along paths that are not necessarily collinear to any of the LORs. Methods for further modifying radiation delivery as well as the detected LOR population are also described.
    Type: Application
    Filed: May 15, 2019
    Publication date: August 29, 2019
    Inventors: Yevgen VORONENKO, Rostem BASSALOW, Peter OLCOTT, Brent HARPER, David LARKIN
  • Publication number: 20180263718
    Abstract: Robotic and/or surgical devices, systems, and methods include a manipulator configured to be mounted to a cannula and a processor. The processor is configured to detect a mounting state of the cannula, detect an input indicating the system is to be in a set-up mode, and inhibit transition of the system to the set-up mode in response to the detected mounting state. In some embodiments, detecting the input indicating the system is to be in the set-up mode includes detecting an activation of a dedicated input button. In some embodiments, detecting the input indicating the system is to be in the set-up mode comprises detecting a joint operation of a first kinematic structure coupling the manipulator with a platform that is supported by a second kinematic structure.
    Type: Application
    Filed: May 21, 2018
    Publication date: September 20, 2018
    Applicant: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Paul Griffiths, Paul Mohr, Nitish Swarup, Michael Costa, David Larkin, Thomas Cooper, Michael Hanuschik
  • Patent number: 9999476
    Abstract: Robotic and/or surgical devices, systems, and methods include kinematic linkage structures and associated control systems configured to facilitate preparation of the system for use. One or more kinematic linkage sub-systems may include joints that are actively driven, passive, or a mix of both, and may employ a set-up mode in which one or more of the joints are actively driven in response to manual articulation of one or more other joints of the kinematic chain. In an exemplary embodiment, the actively driven joints will move a platform structure that supports multiple manipulators in response to movement of one of the manipulators, facilitating and expediting the arrangement of the overall system by moving those multiple manipulators as a unit into alignment with the workspace. Manual independent positioning of the manipulator can be provided through passive set-up joint systems supporting the manipulators relative to the platform.
    Type: Grant
    Filed: January 14, 2016
    Date of Patent: June 19, 2018
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Paul Griffiths, Paul Mohr, Nitish Swarup, Michael Costa, David Larkin, Thomas Cooper, Michael Hanuschik
  • Publication number: 20180133518
    Abstract: Disclosed herein are radiation therapy systems and methods. These radiation therapy systems and methods are used for emission-guided radiation therapy, where gamma rays from markers or tracers that are localized to patient tumor regions are detected and used to direct radiation to the tumor. The radiation therapy systems described herein comprise a gantry comprising a rotatable ring coupled to a stationary frame via a rotating mechanism such that the rotatable ring rotates up to about 70 RPM, a radiation source (e.g., MV X-ray source) mounted on the rotatable ring, and one or more PET detectors mounted on the rotatable ring.
    Type: Application
    Filed: November 15, 2017
    Publication date: May 17, 2018
    Inventors: Brent HARPER, Robert WIGGERS, David LARKIN, David MEER, David NETT, Rostem BASSALOW, Peter OLCOTT, Chris JULIAN, Brent DOLAN, William Jorge PEARCE
  • Patent number: 9893008
    Abstract: An electronic isolation device is formed on a monolithic substrate and includes a plurality of passive isolation components. The isolation components are formed in three metal levels. The first metal level is separated from the monolithic substrate by an inorganic PMD layer. The second metal level is separated from the first metal level by a layer of silicon dioxide. The third metal level is separated from the second metal level by at least 20 microns of polyimide or PBO. The isolation components include bondpads on the third metal level for connections to other devices. A dielectric layer is formed over the third metal level, exposing the bondpads. The isolation device contains no transistors.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: February 13, 2018
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Thomas Dyer Bonifield, Byron Williams, Shrinivasan Jaganathan, David Larkin, Dhaval Atul Saraiya