Patents by Inventor David Lee Campbell

David Lee Campbell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12132273
    Abstract: Electrical connector systems and methods create an electrical connection between a flexible circuit (FC) and a metal terminal of another connector. A reliable electrical connection is achieved with a low-cost tin contact plating, by an automatic FC to metal terminal wiping action with contact force, during the connector to FC assembly process. The connector to FC assembly process is also well suited for automated robotic assembly, which can save costs compared to manual assembly/installation.
    Type: Grant
    Filed: March 15, 2022
    Date of Patent: October 29, 2024
    Assignee: APTIV TECHNOLOGIES AG
    Inventors: Jeffrey S. Campbell, Wesley W. Weber, Duane L. Brantingham, Kurt P. Seifert, David R. Peterson, Joon Lee
  • Patent number: 6694279
    Abstract: Movement of a structure, such a conduit of a Coriolis mass flowmeter, is estimated. A plurality of motion signals representing motion of the structure are mode selective filtered to generate a plurality of mode selective filtered motion signals such that the mode selective filtered motion signals preferentially represent motion associated with a vibrational mode of the structure. A plurality of phase estimates is generated from the plurality of mode selective filtered motion signals. The plurality of phase estimates may be generated using a phase reference derived from a mode selective filtered motion signal of the plurality of mode selective filtered motion signals. According to some embodiments, a frequency of a mode selective filtered motion signal is estimated, and quadrature first and second reference signals are generated based on the estimated frequency. The plurality of phase estimates is generated from the mode selective filtered motion signals and the reference signals.
    Type: Grant
    Filed: February 16, 2001
    Date of Patent: February 17, 2004
    Assignee: Micro Motion, Inc.
    Inventors: Timothy J. Cunningham, David Lee Campbell, Thomas Dean Sharp
  • Patent number: 6535826
    Abstract: Motion signals representing motion of a conduit of a mass flowmeter are mode selective filtered to generate a plurality of mode selective filtered motion signals such that the plurality of mode selective filtered motion signals preferentially represent motion associated with a vibrational mode of the conduit. A plurality of time difference estimates is generated from the plurality of mode selective filtered motion signals. A correlation measure is generated from the plurality of time difference estimates. A status of the mass flowmeter system is determined from the generated correlation measure. In some embodiments, the correlation measure comprises an intercept parameter of a scaling function that relates the plurality of time difference estimates to a plurality of reference time differences representing motion of the conduit at a known mass flow. In other embodiments, the correlation measure comprises a correlation coefficient estimated from the plurality of time difference estimates.
    Type: Grant
    Filed: February 16, 2001
    Date of Patent: March 18, 2003
    Assignee: Micro Motion, Inc.
    Inventors: Timothy J. Cunningham, David Lee Campbell, Thomas Dean Sharp
  • Publication number: 20020183941
    Abstract: Motion signals representing motion of a conduit of a mass flowmeter are mode selective filtered to generate a plurality of mode selective filtered motion signals such that the plurality of mode selective filtered motion signals preferentially represent motion associated with a vibrational mode of the conduit. A plurality of time difference estimates is generated from the plurality of mode selective filtered motion signals. A correlation measure is generated from the plurality of time difference estimates. A status of the mass flowmeter system is determined from the generated correlation measure. In some embodiments, the correlation measure comprises an intercept parameter of a scaling function that relates the plurality of time difference estimates to a plurality of reference time differences representing motion of the conduit at a known mass flow. In other embodiments, the correlation measure comprises a correlation coefficient estimated from the plurality of time difference estimates.
    Type: Application
    Filed: February 16, 2001
    Publication date: December 5, 2002
    Inventors: Timothy J. Cunningham, David Lee Campbell, Thomas Dean Sharp
  • Publication number: 20020183951
    Abstract: Movement of a structure, such a conduit of a Coriolis mass flowmeter, is estimated. A plurality of motion signals representing motion of the structure are mode selective filtered to generate a plurality of mode selective filtered motion signals such that the mode selective filtered motion signals preferentially represent motion associated with a vibrational mode of the structure. A plurality of phase estimates is generated from the plurality of mode selective filtered motion signals. The plurality of phase estimates may be generated using a phase reference derived from a mode selective filtered motion signal of the plurality of mode selective filtered motion signals. According to some embodiments, a frequency of a mode selective filtered motion signal is estimated, and quadrature first and second reference signals are generated based on the estimated frequency. The plurality of phase estimates is generated from the plurality of mode selective filtered motion signals and the first and second reference signals.
    Type: Application
    Filed: February 16, 2001
    Publication date: December 5, 2002
    Inventors: Timothy J. Cunningham, David Lee Campbell, Thomas Dean Sharp
  • Patent number: 6466880
    Abstract: Mass flow of a material in a conduit is estimated by mode selective filtering a plurality of motion signals representing motion of the conduit to generate a plurality of mode selective filtered motion signals such that the mode selective filtered motion signals preferentially represent motion associated with a vibrational mode of the conduit. A plurality of phase estimates is generated from the plurality of mode selective filtered motion signals. A mass flow estimate is generated from the plurality of phase estimates. The plurality of phase estimates may be estimated using a phase reference derived from one of the plurality of mode selective filtered motion signals. In some embodiments, a frequency of a mode selective filtered motion signal of the plurality of mode selective filtered motion signals is estimated. Quadrature first and second reference signals are generated based on the estimated frequency.
    Type: Grant
    Filed: February 16, 2001
    Date of Patent: October 15, 2002
    Assignee: Micro Motion, Inc.
    Inventors: Timothy J. Cunningham, David Lee Campbell, Thomas Dean Sharp
  • Publication number: 20020143481
    Abstract: Mass flow of a material in a conduit is estimated by mode selective filtering a plurality of motion signals representing motion of the conduit to generate a plurality of mode selective filtered motion signals such that the mode selective filtered motion signals preferentially represent motion associated with a vibrational mode of the conduit. A plurality of phase estimates is generated from the plurality of mode selective filtered motion signals. A mass flow estimate is generated from the plurality of phase estimates. The plurality of phase estimates may be estimated using a phase reference derived from one of the plurality of mode selective filtered motion signals. In some embodiments, a frequency of a mode selective filtered motion signal of the plurality of mode selective filtered motion signals is estimated. Quadrature first and second reference signals are generated based on the estimated frequency.
    Type: Application
    Filed: February 16, 2001
    Publication date: October 3, 2002
    Inventors: Timothy J. Cunningham, David Lee Campbell, Thomas Dean Sharp
  • Patent number: 5987998
    Abstract: A drive system for use in a temperature environment. The drive system is made of materials that can withstand high temperatures without degrading. There are no plastics or epoxy adhesives used in this drive system. The drive system is also made more efficient by placing the drive system on a flow tube outside of a loop in the flow tube between the inlet and the outlet.
    Type: Grant
    Filed: August 26, 1998
    Date of Patent: November 23, 1999
    Assignee: Micro Motion, Inc.
    Inventors: David Lee Campbell, John Richard McCarthy, Kurtis Leroy McCormick, Daniel Patrick McNulty