Patents by Inventor David Lee Dean

David Lee Dean has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170131506
    Abstract: Fiber optic equipment that supports independently translatable fiber optic modules and/or fiber optic equipment trays containing one or more fiber optic modules is disclosed. In some embodiments, one or more fiber optic modules are disposed in a plurality of independently translatable fiber optic equipment trays which are received in a tray guide system. In this manner, each fiber optic equipment tray is independently translatable within the guide system. One or more fiber optic modules may also be disposed in one or more module guides disposed in the fiber optic equipment trays to allow each fiber optic module to translate independently of other fiber optic modules in the same fiber optic equipment tray. In other embodiments, a plurality of fiber optic modules are disposed in a module guide system disposed in the fiber optic equipment that translate independently of other fiber optic modules disposed within the module guide system.
    Type: Application
    Filed: January 24, 2017
    Publication date: May 11, 2017
    Inventors: Terry Lee Cooke, David Lee Dean, JR., Tory Allen Klavuhn, Juan Garcia Martinez, Elmer Mariano Juarez, Manuel Alejandro Lopez Sanchez, Juan Miguel Gonzalez Covarrubias
  • Publication number: 20170131504
    Abstract: Fiber optic equipment that supports independently translatable fiber optic modules and/or fiber optic equipment trays containing one or more fiber optic modules is disclosed. In some embodiments, one or more fiber optic modules are disposed in a plurality of independently translatable fiber optic equipment trays which are received in a tray guide system. In this manner, each fiber optic equipment tray is independently translatable within the guide system. One or more fiber optic modules may also be disposed in one or more module guides disposed in the fiber optic equipment trays to allow each fiber optic module to translate independently of other fiber optic modules in the same fiber optic equipment tray. In other embodiments, a plurality of fiber optic modules are disposed in a module guide system disposed in the fiber optic equipment that translate independently of other fiber optic modules disposed within the module guide system.
    Type: Application
    Filed: January 24, 2017
    Publication date: May 11, 2017
    Inventors: Terry Lee Cooke, David Lee Dean, JR., Tory Allen Klavuhn, Juan Garcia Martinez, Elmer Mariano Juarez, Manuel Alejandro Lopez Sanchez, Juan Miguel Gonzalez Covarrubias
  • Publication number: 20170131508
    Abstract: Fiber optic equipment that supports independently translatable fiber optic modules and/or fiber optic equipment trays containing one or more fiber optic modules is disclosed. In some embodiments, one or more fiber optic modules are disposed in a plurality of independently translatable fiber optic equipment trays which are received in a tray guide system. In this manner, each fiber optic equipment tray is independently translatable within the guide system. One or more fiber optic modules may also be disposed in one or more module guides disposed in the fiber optic equipment trays to allow each fiber optic module to translate independently of other fiber optic modules in the same fiber optic equipment tray. In other embodiments, a plurality of fiber optic modules are disposed in a module guide system disposed in the fiber optic equipment that translate independently of other fiber optic modules disposed within the module guide system.
    Type: Application
    Filed: January 23, 2017
    Publication date: May 11, 2017
    Inventors: Terry Lee Cooke, David Lee Dean, JR., Tory Allen Klavuhn, Juan Garcia Martinez, Elmer Mariano Juarez, Manuel Alejandro Lopez Sanchez, Juan Miguel Gonzalez Covarrubias
  • Publication number: 20170131505
    Abstract: Fiber optic equipment that supports independently translatable fiber optic modules and/or fiber optic equipment trays containing one or more fiber optic modules is disclosed. In some embodiments, one or more fiber optic modules are disposed in a plurality of independently translatable fiber optic equipment trays which are received in a tray guide system. In this manner, each fiber optic equipment tray is independently translatable within the guide system. One or more fiber optic modules may also be disposed in one or more module guides disposed in the fiber optic equipment trays to allow each fiber optic module to translate independently of other fiber optic modules in the same fiber optic equipment tray. In other embodiments, a plurality of fiber optic modules are disposed in a module guide system disposed in the fiber optic equipment that translate independently of other fiber optic modules disposed within the module guide system.
    Type: Application
    Filed: January 24, 2017
    Publication date: May 11, 2017
    Inventors: Terry Lee Cooke, David Lee Dean, JR., Tory Allen Klavuhn, Juan Garcia Martinez, Elmer Mariano Juarez, Manuel Alejandro Lopez Sanchez, Juan Miguel Gonzalez Covarrubias
  • Patent number: 9618704
    Abstract: A fiber optic connector inner housing employing a front-loading retention feature for receiving and retaining a ferrule holder, and related fiber optic connectors, cables, and methods are disclosed. In one example, the inner housing has an opening extending therethrough and at least one bayonet locking mechanism that includes an insertion slot, a rotation slot, and a retention slot disposed in an interior surface of the opening. A ferrule holder having a key portion is inserted into the opening such that the key portion is received by the insertion slot. The ferrule holder is next rotated in the rotation slot and released such that a bias member within the inner housing moves the key portion of the ferrule holder into the retention slot, thereby retaining the ferrule holder in the inner housing and preventing accidental removal of the ferrule holder from the inner housing.
    Type: Grant
    Filed: January 25, 2016
    Date of Patent: April 11, 2017
    Assignee: Corning Optical Communications LLC
    Inventors: David Lee Dean, Jr., Michael de Jong, Keith Ernest Hanford, Charles Todd Henke, Roger H. Jones, Louis Edward Parkman, III, Thomas Theuerkorn
  • Patent number: 9470720
    Abstract: A test system, and a method of manufacture thereof, including: a thermal management head including a heat spreader; an electronic device in direct contact with the heat spreader; and an electrical current for transferring energy between the heat spreader and the electronic device.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: October 18, 2016
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: David Lee Dean, Robert W. Ellis, Scott Harrow
  • Patent number: 9411110
    Abstract: A fiber optic assembly includes a connector and a cover received over an end face of the connector. The connector includes a ferrule through which an optical fiber extends to the end face of the connector. An end of the optical fiber is polished proximate to the end face. The cover the cover includes a rigid end cap and a form-fitting material within the end cap overlaying the polished end of the optical fiber. The cover is configured to limit access of particulates to the end face of the connector and draw loose particulates of dust and debris from the end face of the connector upon removal from the connector.
    Type: Grant
    Filed: November 10, 2014
    Date of Patent: August 9, 2016
    Assignee: CORNING OPTICAL COMMUNICATIONS LLC
    Inventors: Robert Elvin Barnette, Jr., David Lee Dean, Jr., Matthew Wade Smith, Wesley Allan Yates
  • Publication number: 20160139343
    Abstract: A fiber optic connector inner housing employing a front-loading retention feature for receiving and retaining a ferrule holder, and related fiber optic connectors, cables, and methods are disclosed. In one example, the inner housing has an opening extending therethrough and at least one bayonet locking mechanism that includes an insertion slot, a rotation slot, and a retention slot disposed in an interior surface of the opening. A ferrule holder having a key portion is inserted into the opening such that the key portion is received by the insertion slot. The ferrule holder is next rotated in the rotation slot and released such that a bias member within the inner housing moves the key portion of the ferrule holder into the retention slot, thereby retaining the ferrule holder in the inner housing and preventing accidental removal of the ferrule holder from the inner housing.
    Type: Application
    Filed: January 25, 2016
    Publication date: May 19, 2016
    Inventors: David Lee Dean, JR., Michael de Jong, Keith Ernest Hanford, Charles Todd Henke, Roger H. Jones, Louis Edward Parkman, III, Thomas Theuerkorn
  • Patent number: 9313874
    Abstract: An electronic system, and a method of manufacture thereof, including: a substrate; an electrical device over the substrate; and a surface mount heat sink next to the electrical device, the surface mount heat sink having an extruded shape characteristic of being formed using an extrusion mechanism.
    Type: Grant
    Filed: June 19, 2013
    Date of Patent: April 12, 2016
    Assignee: SMART STORAGE SYSTEMS, INC.
    Inventors: David Lee Dean, Robert W. Ellis
  • Patent number: 9207407
    Abstract: A fiber optic assembly includes a connector and a cover bonded to an end face of the connector. The connector includes a ferrule, where an optical fiber extends through the ferrule and to the end face of the connector. An end of the optical fiber is polished proximate to the end face. The cover is bonded directly to the end face of the connector, and overlays the polished end of the optical fiber such that the cover protects the optical fiber, limits access of dust to the end face of the connector, and draws loose particulates from the end face upon removal of the cover.
    Type: Grant
    Filed: March 31, 2015
    Date of Patent: December 8, 2015
    Assignee: Corning Optical Communications LLC
    Inventors: Robert Elvin Barnette, Jr., David Lee Dean, Jr., Matthew Wade Smith, Wesley Allan Yates
  • Publication number: 20150205055
    Abstract: A fiber optic assembly includes a connector and a cover bonded to an end face of the connector. The connector includes a ferrule, where an optical fiber extends through the ferrule and to the end face of the connector. An end of the optical fiber is polished proximate to the end face. The cover is bonded directly to the end face of the connector, and overlays the polished end of the optical fiber such that the cover protects the optical fiber, limits access of dust to the end face of the connector, and draws loose particulates from the end face upon removal of the cover.
    Type: Application
    Filed: March 31, 2015
    Publication date: July 23, 2015
    Inventors: Robert Elvin Barnette, JR., David Lee Dean, JR., Matthew Wade Smith, Wesley Allan Yates
  • Patent number: 8998503
    Abstract: A fiber optic assembly includes a connector and a cover bonded to an end face of the connector. The connector includes a ferrule, where an optical fiber extends through the ferrule and to the end face of the connector. An end of the optical fiber is polished proximate to the end face. The cover is bonded directly to the end face of the connector, and overlays the polished end of the optical fiber such that the cover protects the optical fiber, limits access of dust to the end face of the connector, and draws loose particulates from the end face upon removal of the cover.
    Type: Grant
    Filed: February 6, 2013
    Date of Patent: April 7, 2015
    Assignee: Corning Cable Systems LLC
    Inventors: Robert Elvin Barnette, Jr., David Lee Dean, Jr., Matthew Wade Smith, Wesley Allan Yates
  • Publication number: 20150063759
    Abstract: A fiber optic assembly includes a connector and a cover received over an end face of the connector. The connector includes a ferrule through which an optical fiber extends to the end face of the connector. An end of the optical fiber is polished proximate to the end face. The cover the cover includes a rigid end cap and a form-fitting material within the end cap overlaying the polished end of the optical fiber. The cover is configured to limit access of particulates to the end face of the connector and draw loose particulates of dust and debris from the end face of the connector upon removal from the connector.
    Type: Application
    Filed: November 10, 2014
    Publication date: March 5, 2015
    Inventors: Robert Elvin Barnette, JR., David Lee Dean, JR., Matthew Wade Smith, Wesley Allan Yates
  • Publication number: 20140376190
    Abstract: An electronic system, and a method of manufacture thereof, including: a substrate; an electrical device over the substrate; and a surface mount heat sink next to the electrical device, the surface mount heat sink having an extruded shape characteristic of being formed using an extrusion mechanism.
    Type: Application
    Filed: June 19, 2013
    Publication date: December 25, 2014
    Inventors: David Lee Dean, Robert W. Ellis
  • Publication number: 20140376174
    Abstract: An electronic assembly and method of manufacturing includes: an airflow bracket having a circular rail and an airflow tab, the airflow bracket electrically coupling the circular rail and the airflow tab; a top board attached to the circular rail for electrically coupling the top board and the circular rail; and a bottom board attached to the circular rail for electrically coupling the top board and the circular rail, the bottom board positioned to form a thermal channel between the top board and the bottom board for directing air through a vent opening of the circular rail.
    Type: Application
    Filed: June 19, 2013
    Publication date: December 25, 2014
    Inventors: David Lee Dean, Dennis Bennett, Robert W. Ellis
  • Publication number: 20140253157
    Abstract: A test system, and a method of manufacture thereof, including: a thermal management head including a heat spreader; an electronic device in direct contact with the heat spreader; and an electrical current for transferring energy between the heat spreader and the electronic device.
    Type: Application
    Filed: March 8, 2013
    Publication date: September 11, 2014
    Applicant: SMART STORAGE SYSTEMS, INC.
    Inventors: David Lee Dean, Robert W. Ellis, Scott Harrow
  • Publication number: 20140227438
    Abstract: A fiber optic cable includes a first optical fiber, a jacket, and a second optical fiber. The first optical fiber includes a glass core and cladding. The glass core is configured to provide controlled transmission of light through the fiber optic cable for high-speed data communication. The jacket has an interior surface that defines a conduit through which the first optical fiber extends. The jacket further has an exterior surface that defines the outside of the fiber optic cable. The second optical fiber is integrated with the exterior surface of the jacket.
    Type: Application
    Filed: November 22, 2013
    Publication date: August 14, 2014
    Applicant: Corning Cable Systems LLC
    Inventors: David Lee Dean, JR., William Carl Hurley
  • Publication number: 20130308909
    Abstract: A fiber optic assembly includes a connector and a cover bonded to an end face of the connector. The connector includes a ferrule, where an optical fiber extends through the ferrule and to the end face of the connector. An end of the optical fiber is polished proximate to the end face. The cover is bonded directly to the end face of the connector, and overlays the polished end of the optical fiber such that the cover protects the optical fiber, limits access of dust to the end face of the connector, and draws loose particulates from the end face upon removal of the cover.
    Type: Application
    Filed: February 6, 2013
    Publication date: November 21, 2013
    Inventors: Robert Elvin Barnette, JR., David Lee Dean, JR., Matthew Wade Smith, Wesley Allan Yates
  • Publication number: 20130251326
    Abstract: Fiber optic equipment that supports independently translatable fiber optic modules and/or fiber optic equipment trays containing one or more fiber optic modules is disclosed. In some embodiments, one or more fiber optic modules are disposed in a plurality of independently translatable fiber optic equipment trays which are received in a tray guide system. In this manner, each fiber optic equipment tray is independently translatable within the guide system. One or more fiber optic modules may also be disposed in one or more module guides disposed in the fiber optic equipment trays to allow each fiber optic module to translate independently of other fiber optic modules in the same fiber optic equipment tray. In other embodiments, a plurality of fiber optic modules are disposed in a module guide system disposed in the fiber optic equipment that translate independently of other fiber optic modules disposed within the module guide system.
    Type: Application
    Filed: May 23, 2013
    Publication date: September 26, 2013
    Applicant: Corning Cable Systems LLC
    Inventors: Terry Lee Cooke, David Lee Dean, JR., Tory Allen Klavuhn, Juan Garcia Martinez, Elmer Mariano Juarez, Manuel Alejandro Lopez Sanchez, Juan Miguel Gonzalez Covarrubias
  • Patent number: 8437147
    Abstract: An equipment cabinet (2) includes an equipment rack (3) for mounting equipment (20), and includes organizational elements for organizing cables within the cabinet. The cables may be organized to reduce impeding airflow to or from the equipment, and/or to reduce unwanted bending of the cables themselves. The organizational elements may include one or more of: a trunk cable (40) including a furcation plug (45) and universal clip (47); a furcation bracket—either vertical (60) or horizontal (80); a termination panel (100); a trunk cable manager (140, 200); and/or an accessory bracket (180). The organizational elements may be used in various combinations with one another, and may be provided in a kit.
    Type: Grant
    Filed: May 9, 2011
    Date of Patent: May 7, 2013
    Assignee: Chatsworth Products, Inc.
    Inventors: David Lee Dean, Jr., David Brian Donowho, Richard Evans Lewis, II, Karl Theodore Messmer, Alan William Ugolini