Patents by Inventor David Lehrberg

David Lehrberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210346143
    Abstract: A container for a medical device having a housing defining a cavity for receiving the device, a coupling zone external to the cavity, and an exit aperture between the cavity and the coupling zone; and a bearing surface located within the cavity, the bearing surface, exit aperture and coupling zone defining an exit path along which the device can be moved for deployment from the container. The bearing surface is spaced from the exit aperture and arranged, together with the coupling zone, such that the exit path is substantially straight. The cavity is approximately cylindrical, and the bearing surface, the exit aperture, and the coupling zone are aligned such that the exit path extends in a direction that is substantially tangential to the cavity. The housing comprises a two part structure joined together in a plane substantially orthogonal to the exit path. The housing defines a substantially unobstructed cavity for receiving the device.
    Type: Application
    Filed: September 8, 2017
    Publication date: November 11, 2021
    Applicant: PneumRx, Inc.
    Inventors: David Lehrberg, Mark Mathis, Jeffrey Etter, Verna Rodriguez
  • Patent number: 10543053
    Abstract: A container for a medical device having a housing defining a cavity for receiving a device, such as a lung volume reduction coil, is disclosed. In some embodiments, the container includes a coupling zone external to the cavity, an exit aperture between the cavity and the coupling zone, and a bearing surface located within the cavity, the bearing surface, exit aperture and coupling zone defining an exit path along which the device can be moved for deployment from the container. The bearing surface is spaced from the exit aperture and arranged, together with the coupling zone, such that the exit path is substantially straight. In some embodiments, the cavity may be approximately cylindrical, and the bearing surface, the exit aperture, and the coupling zone are aligned such that the exit path extends in a direction that is substantially tangential to the cavity.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: January 28, 2020
    Assignee: PneumRx, Inc.
    Inventors: David Lehrberg, Jeffrey W. Etter, Mark L. Mathis, Verna Rodriguez
  • Publication number: 20190159799
    Abstract: This invention relates to device, systems, kits and methods that enable selective dissection of lung tissue to remove diseased tissue from healthy tissue without damaging blood vessels or airways. The invention and methods enable minimally invasive lung surgery procedures by providing a device and method to perform automated dissection that discriminates against traumatizing critical lung tissue.
    Type: Application
    Filed: February 15, 2019
    Publication date: May 30, 2019
    Inventors: Mark L. Mathis, Amelia Lasser, David Lehrberg
  • Patent number: 10188398
    Abstract: Elongate implant structures can be introduced into an airway system to a target airway axial region, often to apply lateral bending and/or compression forces against the lung tissue from within the airways for an extended period of time. Structures or features of the implants may inhibit tissue reactions that might otherwise allow portions of the device to eventually traverse through the wall of the airway. The devices may enhance the area bearing laterally on the tissue of a surrounding airway lumen wall. Embodiments may have features which increase the device friction with the airway to allow the device to grip the surrounding airway as the device is deployed. An appropriate adhesive may be introduced around the device in the lung. Hydrophilic material may inhibit biofilm formation, or features which induce some tissue ingrowth (stimulation of tissue growth) may enhance implanted device supported.
    Type: Grant
    Filed: September 12, 2016
    Date of Patent: January 29, 2019
    Assignee: PneumRx, Inc.
    Inventors: Mark L. Mathis, Patrick Wu, David Lehrberg, Jaime Vasquez, Erin McGurk, Ronald Dieck, Andrew Stein
  • Patent number: 10166041
    Abstract: This invention relates to device, systems, kits and methods that enable selective dissection of lung tissue to remove diseased tissue from healthy tissue without damaging blood vessels or airways. The invention and methods enable minimally invasive lung surgery procedures by providing a device and method to perform automated dissection that discriminates against traumatizing critical lung tissue.
    Type: Grant
    Filed: November 12, 2014
    Date of Patent: January 1, 2019
    Assignee: PneumRx, Inc.
    Inventors: Mark L. Mathis, Amelia Lasser, David Lehrberg
  • Publication number: 20180092704
    Abstract: A container for a medical device having a housing defining a cavity for receiving a device, such as a lung volume reduction coil, is disclosed. In some embodiments, the container includes a coupling zone external to the cavity, an exit aperture between the cavity and the coupling zone, and a bearing surface located within the cavity, the bearing surface, exit aperture and coupling zone defining an exit path along which the device can be moved for deployment from the container. The bearing surface is spaced from the exit aperture and arranged, together with the coupling zone, such that the exit path is substantially straight. In some embodiments, the cavity may be approximately cylindrical, and the bearing surface, the exit aperture, and the coupling zone are aligned such that the exit path extends in a direction that is substantially tangential to the cavity.
    Type: Application
    Filed: September 29, 2017
    Publication date: April 5, 2018
    Inventors: David Lehrberg, Jeffrey W. Etter, Mark L. Mathis, Verna Rodriguez
  • Patent number: 9782558
    Abstract: A lung volume reduction system is disclosed comprising an implantable device adapted to be delivered to a lung airway of a patient in a delivery configuration and to change to a deployed configuration to bend the lung airway. The invention also discloses a method of bending a lung airway of a patient comprising inserting a device into the airway in a delivery configuration and bending the device into a deployed configuration, thereby bending the airway.
    Type: Grant
    Filed: August 6, 2014
    Date of Patent: October 10, 2017
    Assignee: PneumRx, Inc.
    Inventors: Nathan Aronson, Patrick Wu, David Lehrberg, Mark L. Mathis
  • Publication number: 20170156732
    Abstract: Methods, systems and devices are disclosed for the efficient and coordinated delivery of COPD treatment to the lung(s) of a patient. A lung volume reduction system is disclosed comprising an implantable device adapted to be delivered to an airway of a patient in a constrained configuration and to change to a tissue-compressing configuration when deployed at a target zone to provide treatment to the lung airway. The invention further discloses a method of quickly and efficiently deploying the device using a single coordinated motion or signal which may be particularly useful when multiple devices are deployed at multiple target zones.
    Type: Application
    Filed: February 14, 2017
    Publication date: June 8, 2017
    Applicant: PneumRx, Inc.
    Inventors: David Lehrberg, Mark L. Mathis, Verna Rodriguez, Jeffrey Etter, Kevin Mitz, Christoph Steven
  • Publication number: 20170065282
    Abstract: Elongate implant structures can be introduced into an airway system to a target airway axial region, often to apply lateral bending and/or compression forces against the lung tissue from within the airways for an extended period of time. Structures or features of the implants may inhibit tissue reactions that might otherwise allow portions of the device to eventually traverse through the wall of the airway. The devices may enhance the area bearing laterally on the tissue of a surrounding airway lumen wall. Embodiments may have features which increase the device friction with the airway to allow the device to grip the surrounding airway as the device is deployed. An appropriate adhesive may be introduced around the device in the lung. Hydrophilic material may inhibit biofilm formation, or features which induce some tissue ingrowth (stimulation of tissue growth) may enhance implanted device supported.
    Type: Application
    Filed: September 12, 2016
    Publication date: March 9, 2017
    Inventors: Mark L. Mathis, Patrick Wu, David Lehrberg, Jaime Vasquez, Erin McGurk, Ronald Dieck, Andrew Stein
  • Patent number: 9474533
    Abstract: Elongate implant structures can be introduced into an airway system to a target airway axial region, often to apply lateral bending and/or compression forces against the lung tissue from within the airways for an extended period of time. Structures or features of the implants may inhibit tissue reactions that might otherwise allow portions of the device to eventually traverse through the wall of the airway. The devices may enhance the area bearing laterally on the tissue of a surrounding airway lumen wall. Embodiments may have features which increase the device friction with the airway to allow the device to grip the surrounding airway as the device is deployed. An appropriate adhesive may be introduced around the device in the lung. Hydrophilic material may inhibit biofilm formation, or features which induce some tissue ingrowth (stimulation of tissue growth) may enhance implanted device supported.
    Type: Grant
    Filed: March 26, 2014
    Date of Patent: October 25, 2016
    Assignee: PneumRx, Inc.
    Inventors: Mark L. Mathis, Patrick Wu, David Lehrberg, Jaime Vasquez, Erin McGurk, Ronald Dieck, Andrew Stein
  • Publication number: 20150142035
    Abstract: This invention relates to device, systems, kits and methods that enable selective dissection of lung tissue to remove diseased tissue from healthy tissue without damaging blood vessels or airways. The invention and methods enable minimally invasive lung surgery procedures by providing a device and method to perform automated dissection that discriminates against traumatizing critical lung tissue.
    Type: Application
    Filed: November 12, 2014
    Publication date: May 21, 2015
    Inventors: Mark L. Mathis, Amelia Lasser, David Lehrberg
  • Publication number: 20150080934
    Abstract: A lung volume reduction system is disclosed comprising an implantable device adapted to be delivered to a lung airway of a patient in a delivery configuration and to change to a deployed configuration to bend the lung airway. The invention also discloses a method of bending a lung airway of a patient comprising inserting a device into the airway in a delivery configuration and bending the device into a deployed configuration, thereby bending the airway.
    Type: Application
    Filed: August 6, 2014
    Publication date: March 19, 2015
    Inventors: Nathan Aronson, Patrick Wu, David Lehrberg, Mark L. Mathis
  • Publication number: 20150073563
    Abstract: Elongate implant structures can be introduced into an airway system to a target airway axial region, often to apply lateral bending and/or compression forces against the lung tissue from within the airways for an extended period of time. Structures or features of the implants may inhibit tissue reactions that might otherwise allow portions of the device to eventually traverse through the wall of the airway. The devices may enhance the area bearing laterally on the tissue of a surrounding airway lumen wall. Embodiments may have features which increase the device friction with the airway to allow the device to grip the surrounding airway as the device is deployed. An appropriate adhesive may be introduced around the device in the lung. Hydrophilic material may inhibit biofilm formation, or features which induce some tissue ingrowth (stimulation of tissue growth) may enhance implanted device supported.
    Type: Application
    Filed: March 26, 2014
    Publication date: March 12, 2015
    Applicant: PNEUMRX, INC.
    Inventors: Mark L. Mathis, Patrick Wu, David Lehrberg, Jaime Vasquez, Erin McGurk, Ronald Dieck, Andrew Stein
  • Patent number: 8932310
    Abstract: A lung volume reduction system is disclosed comprising an implantable device adapted to be delivered to a lung airway of a patient in a delivery configuration and to change to a deployed configuration to bend the lung airway. The invention also discloses a method of bending a lung airway of a patient comprising inserting a device into the airway in a delivery configuration and bending the device into a deployed configuration, thereby bending the airway.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: January 13, 2015
    Assignee: PneumRx, Inc.
    Inventors: David Thompson, Nathan Aronson, Patrick Wu, David Lehrberg, Mark L. Mathis, Michael Boutillette, Jaime Vasquez
  • Publication number: 20140371705
    Abstract: A lung volume reduction system is disclosed comprising an implantable device adapted to be delivered to a lung airway of a patient in a delivery configuration and to change to a deployed configuration to bend the lung airway. The invention also discloses a method of bending a lung airway of a patient comprising inserting a device into the airway in a delivery configuration and bending the device into a deployed configuration, thereby bending the airway.
    Type: Application
    Filed: January 23, 2014
    Publication date: December 18, 2014
    Applicant: PneumRx, Inc.
    Inventors: David Thompson, Nathan Aronson, Patrick Wu, David Lehrberg, Mark L. Mathis, Michael Boutillette, Jaime Vasquez
  • Patent number: 8911465
    Abstract: This invention relates to device, systems, kits and methods that enable selective dissection of lung tissue to remove diseased tissue from healthy tissue without damaging blood vessels or airways. The invention and methods enable minimally invasive lung surgery procedures by providing a device and method to perform automated dissection that discriminates against traumatizing critical lung tissue.
    Type: Grant
    Filed: August 16, 2007
    Date of Patent: December 16, 2014
    Assignee: PneumRx, Inc.
    Inventors: Mark Mathis, Amelia Lasser, David Lehrberg
  • Patent number: 8721734
    Abstract: Elongate implant structures can be introduced into an airway system to a target airway axial region, often to apply lateral bending and/or compression forces against the lung tissue from within the airways for an extended period of time. Structures or features of the implants may inhibit tissue reactions that might otherwise allow portions of the device to eventually traverse through the wall of the airway. The devices may enhance the area bearing laterally on the tissue of a surrounding airway lumen wall. Embodiments may have features which increase the device friction with the airway to allow the device to grip the surrounding airway as the device is deployed. An appropriate adhesive may be introduced around the device in the lung. Hydrophilic material may inhibit biofilm formation, or features which induce some tissue ingrowth (stimulation of tissue growth) may enhance implanted device supported.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: May 13, 2014
    Assignee: PneumRx, Inc.
    Inventors: Mark L. Mathis, Patrick Wu, David Lehrberg, Jaime Vasquez, Erin McGurk, Ronald Dieck, Andrew Stein
  • Patent number: 8668707
    Abstract: A lung volume reduction system is disclosed comprising an implantable device adapted to be delivered to a lung airway of a patient in a delivery configuration and to change to a deployed configuration to bend the lung airway. The invention also discloses a method of bending a lung airway of a patient comprising inserting a device into the airway in a delivery configuration and bending the device into a deployed configuration, thereby bending the airway.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: March 11, 2014
    Assignee: PneumRx, Inc.
    Inventors: David Thompson, Nathan Aronson, Patrick Wu, David Lehrberg, Mark L. Mathis, Michael Boutillette, Jaime Vasquez
  • Patent number: 8632605
    Abstract: A lung volume reduction system is disclosed comprising an elongate implantable device adapted to be delivered to a lung airway of a patient in a delivery configuration and to change to a deployed configuration to compress lung tissue. The implant may be longer in axial length than an axial length of the target axial region in which it is deployed. Deployment may involve allowing an end of the implant to move relative to surrounding tissue while the implant is progressively deployed.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: January 21, 2014
    Assignee: PneumRx, Inc.
    Inventors: David Thompson, Nathan Aronson, Patrick Wu, David Lehrberg, Mark L. Mathis, Michael Boutillette, Jaime Vasquez
  • Patent number: D818700
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: May 29, 2018
    Assignee: PneumRx, Inc.
    Inventors: David Lehrberg, Jeffrey W. Etter