Patents by Inventor David Lei

David Lei has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230160347
    Abstract: A hybrid electric propulsion system includes a gas turbine engine having at least one compressor section and at least one turbine section operably coupled to a shaft. The hybrid electric propulsion system includes an electric motor configured to augment rotational power of the shaft of the gas turbine engine. A controller is operable to determine hybrid electric propulsion system parameters based on a composite system model and sensor data, determine a prediction based on the hybrid electric propulsion system parameters and the composite system model, determine a model predictive control optimization for a plurality of hybrid electric system control effectors based on the prediction using a plurality of reduced-order partitions of the composite system model, and actuate the hybrid electric system control effectors based on the model predictive control optimization.
    Type: Application
    Filed: January 12, 2023
    Publication date: May 25, 2023
    Inventors: Timothy J. Crowley, Sorin Bengea, Manuj Dhingra, David Gelwan, Kevin Hendricks, Joshua Adams, Martin Richard Amari, Richard P. Meisner, David Lei Ma
  • Patent number: 11555455
    Abstract: A hybrid electric propulsion system includes a gas turbine engine having at least one compressor section and at least one turbine section operably coupled to a shaft. The hybrid electric propulsion system includes an electric motor configured to augment rotational power of the shaft of the gas turbine engine. A controller is operable to determine an estimate of hybrid electric propulsion system parameters based on a composite system model and sensor data, determine a model predictive control state and a prediction based on the hybrid electric propulsion system parameters and the composite system model, determine a model predictive control optimization for a plurality of hybrid electric system control effectors based on the model predictive control state and the prediction using a plurality of reduced-order partitions of the composite system model, and actuate the hybrid electric system control effectors based on the model predictive control optimization.
    Type: Grant
    Filed: February 6, 2020
    Date of Patent: January 17, 2023
    Assignee: RAYTHEON TECHNOLOGIES CORPORATION
    Inventors: Timothy J. Crowley, Sorin Bengea, Manuj Dhingra, David Gelwan, Kevin Hendricks, Joshua Adams, Martin Richard Amari, Richard P. Meisner, David Lei Ma
  • Patent number: 11519289
    Abstract: A hybrid electric gas turbine engine includes a fan section having a fan, a turbine section having a turbine drivably connected to the fan through a main shaft that extends along a central longitudinal axis, a gas generating core extending along a first axis that is radially offset from the central longitudinal axis, and an electric motor drivably connected to the main shaft, wherein the electric motor is colinear with the main shaft.
    Type: Grant
    Filed: December 6, 2019
    Date of Patent: December 6, 2022
    Assignee: Raytheon Technologies Corporation
    Inventors: Gabriel L. Suciu, Om P. Sharma, Joseph B. Staubach, Marc J. Muldoon, Jesse M. Chandler, David Lei Ma
  • Patent number: 11346290
    Abstract: A control system for limiting a power turbine torque of a gas turbine engine is disclosed. In various embodiments, the control system includes an engine control module configured to output an effector command signal to a gas generator of the gas turbine engine; a power turbine governor module configured to output to the engine control module a power turbine torque request signal; and a power turbine torque limiter module configured to output to the power turbine governor module a power turbine speed rate signal to limit a power turbine speed overshoot of the gas turbine engine.
    Type: Grant
    Filed: February 21, 2020
    Date of Patent: May 31, 2022
    Assignee: Raytheon Technologies Corporation
    Inventors: Chaohong Cai, Richard P. Meisner, Timothy J. Crowley, David Lei Ma
  • Publication number: 20210340956
    Abstract: A control system for limiting power turbine torque (QPT) of a gas turbine engine includes a controller including a processor and memory configured to control the gas turbine engine, the controller including an engine control module that provides an effector command signal to a gas generator of the gas turbine engine; a power turbine governor module that outputs a preliminary torque request (QPT_req_pre); and a power turbine torque (QPT) optimal limiter module that outputs a maximum torque topper (QPT_max) to limit a power turbine speed overshoot of the gas turbine engine; wherein the controller outputs a minimum value between the preliminary torque request (QPT_req_pre) and the maximum torque topper (QPT_max) to the engine control module.
    Type: Application
    Filed: July 15, 2021
    Publication date: November 4, 2021
    Applicant: RAYTHEON TECHNOLOGIES CORPORATION
    Inventors: Chaohong Cai, Timothy J. Crowley, David Lei Ma, Richard P. Meisner
  • Publication number: 20210262400
    Abstract: A control system for limiting a power turbine torque of a gas turbine engine is disclosed. In various embodiments, the control system includes an engine control module configured to output an effector command signal to a gas generator of the gas turbine engine; a power turbine governor module configured to output to the engine control module a power turbine torque request signal; and a power turbine torque limiter module configured to output to the power turbine governor module a power turbine speed rate signal to limit a power turbine speed overshoot of the gas turbine engine.
    Type: Application
    Filed: February 21, 2020
    Publication date: August 26, 2021
    Applicant: United Technologies Corporation
    Inventors: Chaohong Cai, Richard P. Meisner, Timothy J. Crowley, David Lei Ma
  • Patent number: 11092136
    Abstract: A control system for limiting power turbine torque (QPT) of a gas turbine engine includes a controller including a processor and memory configured to control the gas turbine engine, the controller including an engine control module that provides an effector command signal to a gas generator of the gas turbine engine; a power turbine governor module that outputs a preliminary torque request (QPT_req_pre); and a power turbine torque (QPT) optimal limiter module that outputs a maximum torque topper (QPT_max) to limit a power turbine speed overshoot of the gas turbine engine; wherein the controller outputs a minimum value between the preliminary torque request (QPT_req_pre) and the maximum torque topper (QPT_max) to the engine control module.
    Type: Grant
    Filed: May 4, 2018
    Date of Patent: August 17, 2021
    Assignee: Raytheon Technologies Corporation
    Inventors: Chaohong Cai, Timothy J Crowley, David Lei Ma, Richard P Meisner
  • Publication number: 20210172333
    Abstract: A hybrid electric gas turbine engine includes a fan section having a fan, a turbine section having a turbine drivably connected to the fan through a main shaft that extends along a central longitudinal axis, a gas generating core extending along a first axis that is radially offset from the central longitudinal axis, and an electric motor drivably connected to the main shaft, wherein the electric motor is colinear with the main shaft.
    Type: Application
    Filed: December 6, 2019
    Publication date: June 10, 2021
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventors: GABRIEL L. SUCIU, Om P. Sharma, Joseph B. Staubach, Marc J. Muldoon, Jesse M. Chandler, David Lei Ma
  • Publication number: 20200347787
    Abstract: A hybrid electric propulsion system includes a gas turbine engine having at least one compressor section and at least one turbine section operably coupled to a shaft. The hybrid electric propulsion system includes an electric motor configured to augment rotational power of the shaft of the gas turbine engine. A controller is operable to determine an estimate of hybrid electric propulsion system parameters based on a composite system model and sensor data, determine a model predictive control state and a prediction based on the hybrid electric propulsion system parameters and the composite system model, determine a model predictive control optimization for a plurality of hybrid electric system control effectors based on the model predictive control state and the prediction using a plurality of reduced-order partitions of the composite system model, and actuate the hybrid electric system control effectors based on the model predictive control optimization.
    Type: Application
    Filed: February 6, 2020
    Publication date: November 5, 2020
    Inventors: Timothy J. Crowley, Sorin Bengea, Manuj Dhingra, David Gelwan, Kevin Hendricks, Joshua Adams, Martin Richard Amari, Richard P. Meisner, David Lei Ma
  • Patent number: 10711734
    Abstract: A control system for a gas turbine engine, a method for controlling a gas turbine engine, and a gas turbine engine are disclosed. The control system may include a nozzle scheduler for determining an exhaust nozzle position goal based on a nozzle schedule of exhaust nozzle positions related to flight conditions. The control system may further include a control module for determining a control command for the gas turbine engine. The control command may include, at least, a fuel flow command and an exhaust nozzle position command and the control command may be based on, at least, the exhaust nozzle position goal and an estimated thrust value. The control system may further include an actuator for controlling the gas turbine engine based on the control command.
    Type: Grant
    Filed: April 8, 2019
    Date of Patent: July 14, 2020
    Assignee: RAYTHEON TECHNOLOGIES CORPORATION
    Inventors: Chaohong Cai, Timothy J. Crowley, Mark E. Lacour, David Lei Ma
  • Publication number: 20200025130
    Abstract: A control system for a gas turbine engine, a method for controlling a gas turbine engine, and a gas turbine engine are disclosed. The control system may include a nozzle scheduler for determining an exhaust nozzle position goal based on a nozzle schedule of exhaust nozzle positions related to flight conditions. The control system may further include a control module for determining a control command for the gas turbine engine. The control command may include, at least, a fuel flow command and an exhaust nozzle position command and the control command may be based on, at least, the exhaust nozzle position goal and an estimated thrust value. The control system may further include an actuator for controlling the gas turbine engine based on the control command.
    Type: Application
    Filed: April 8, 2019
    Publication date: January 23, 2020
    Inventors: Chaohong Cai, Timothy J. Crowley, Mark E. Lacour, David Lei Ma
  • Publication number: 20190338754
    Abstract: A control system for limiting power turbine torque (QPT) of a gas turbine engine includes a controller including a processor and memory configured to control the gas turbine engine, the controller including an engine control module that provides an effector command signal to a gas generator of the gas turbine engine; a power turbine governor module that outputs a preliminary torque request (QPT_req_pre); and a power turbine torque (QPT) optimal limiter module that outputs a maximum torque topper (QPT_max) to limit a power turbine speed overshoot of the gas turbine engine; wherein the controller outputs a minimum value between the preliminary torque request (QPT_req_pre) and the maximum torque topper (QPT_max) to the engine control module.
    Type: Application
    Filed: May 4, 2018
    Publication date: November 7, 2019
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventors: Chaohong Cai, Timothy J. Crowley, David Lei Ma, Richard P. Meisner
  • Patent number: 9079857
    Abstract: The present invention generally relates to a novel process for preparing alkali metal pyrithione from pyridine N-oxide, using a sulfurination agent and a base agent. In particular, the present invention relates to an efficient process for preparing polyvalent metal complexes of sodium pyrithione from the alkali metal pyridine N-oxide described herein.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: July 14, 2015
    Assignee: Arch Chemicals, Inc.
    Inventors: Rahim Hani, John J. Jardas, Richard Dumas, David Lei
  • Publication number: 20130261309
    Abstract: The present invention generally relates to a novel process for preparing alkali metal pyrithione from pyridine N-oxide, using a sulfurination agent and a base agent. In particular, the present invention relates to an efficient process for preparing polyvalent metal complexes of sodium pyrithione from the alkali metal pyridine N-oxide described herein.
    Type: Application
    Filed: March 15, 2013
    Publication date: October 3, 2013
    Applicant: Arch Chemicals, Inc.
    Inventors: Rahim Hani, John J. Jardas, Richard Dumas, David Lei
  • Patent number: 7792930
    Abstract: A set of network devices having varying device attributes, such as varying attributes due to different operating system versions, different hardware versions, or different hardware platforms, may be efficiently managed. A syntax file may be used to describe constraints relating to attributes of multiple versions of the network devices. At least one device configuration file (DCF) stores version-based differences relating to the different versions of the network devices, the syntax file and at least one the one DCF collectively describe a set of constraints for the attributes of the network devices.
    Type: Grant
    Filed: November 10, 2004
    Date of Patent: September 7, 2010
    Assignee: Juniper Networks, Inc.
    Inventors: David Lei Zhang, Brian Yean-Shiang Leu, Chi-Chang Lin, Xiangang Huang, James E. Fehrle