Patents by Inventor David Lentz

David Lentz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20050177132
    Abstract: An articulation segment for a catheter includes a tube formed with a first plurality of axially aligned slits that are respectively oriented in planes perpendicular to the axis, with each slit extending azimuthally in an arc partway around the axis. The tube is also formed with a second plurality of similarly formed slits that are axially offset and diametrically opposed relative to the slits of the first plurality to allow for a bending of the catheter in a plurality of different planes. In a particular embodiment, the slits are arranged to allow the articulation segment to be reconfigured from a straight, substantially cylindrically shaped tube to a configuration in which a portion of the articulation segment is formed in the shape of a ring.
    Type: Application
    Filed: June 21, 2004
    Publication date: August 11, 2005
    Inventors: David Lentz, Richard Koerner
  • Publication number: 20050177131
    Abstract: An articulation segment for a catheter includes a tube formed with a first plurality of axially aligned slits that are respectively oriented in planes perpendicular to the axis, with each slit extending azimuthally in an arc partway around the axis. The tube is also formed with a second plurality of similarly formed slits that are axially offset and diametrically opposed relative to the slits of the first plurality to allow for a bending of the catheter in a plurality of different planes.
    Type: Application
    Filed: February 9, 2004
    Publication date: August 11, 2005
    Inventors: David Lentz, Richard Koerner
  • Publication number: 20050027334
    Abstract: A catheter usable for cryogenic ablation of tissues is described. The catheter has a deflectable segment with a reduced diameter and a tip portion with a diameter greater than the reduced diameter. A resilient element allows for bending of the deflectable segment preferentially in one plane, and an actuator is used to control the bending of the deflectable segment.
    Type: Application
    Filed: July 30, 2003
    Publication date: February 3, 2005
    Inventors: David Lentz, Steven Kovalcheck
  • Publication number: 20050027253
    Abstract: A system for facilitating the insertion of a medical device into a patient, comprises a flexible sheath and an air trap chamber coupled thereto. The air trap chamber includes a device insertion opening and an exit opening which allow the distal end of a medical device to pass through the chamber before it enters the sheath. The chamber also includes a gas removal port opening for preventing air from entering the sheath by removing air from the chamber.
    Type: Application
    Filed: July 29, 2003
    Publication date: February 3, 2005
    Inventors: Thomas Castellano, David Lentz
  • Publication number: 20050027289
    Abstract: Systems and methods for treating an arrhythmia originating in a pulmonary vein of a patient are described. The system includes a rigid sheath and an elongated catheter that defines an axis and has an ablating distal section. The distal section includes a plurality of conductive bands, with each band establishing an enclosed chamber. The ablating distal section is reconfigurable between a first compact configuration in which each band is positioned relatively near the axis for transit through the sheath and second expanded configuration in which each band is positioned relatively far from the axis. Once in the second configuration, a fluid refrigerant is expanded into each enclosed chamber to cool the bands and cryoablate tissue. The second configuration is particularly useful for ablating a circumferential band of tissue, for example, a band of tissue surrounding the opening (i.e. ostium) where a pulmonary vein connects with the left atrium.
    Type: Application
    Filed: July 31, 2003
    Publication date: February 3, 2005
    Inventors: Thomas Castellano, David Lentz, Eric Ryba
  • Publication number: 20050016188
    Abstract: A system and method for transferring heat requires a supply tube connected in fluid communication with a capillary tube. A tip member is positioned to surround the distal end of the capillary tube to create a cryo-chamber. In operation, a liquid refrigerant is introduced into the supply tube at a working pressure (e.g. 450 psia). The pressure is then significantly reduced on the liquid refrigerant as it transits through the capillary tube. The refrigerant then exits the distal end of the capillary tube, still in its liquid state. Inside the cryo-chamber, at a pressure of less than about one atmosphere, the refrigerant transitions into its gaseous state. The resultant refrigeration causes heat to transfer into the cryo-chamber.
    Type: Application
    Filed: July 24, 2003
    Publication date: January 27, 2005
    Inventors: David Lentz, Matt Riordan, Eric Ryba
  • Publication number: 20040193242
    Abstract: An implantable microporous ePTFE tubular vascular graft exhibits long term patency, superior radial tensile strength and suture hole elongation resistance. The graft includes a first ePTFE tube and a second ePTFE tube circumferentially disposed over the first tube. The first ePTFE tube exhibits a porosity sufficient to promote cell endothelization, tissue ingrowth and healing. The second ePTFE tube exhibits enhanced radial strength in excess of the radial tensile strength of the first tube.
    Type: Application
    Filed: April 9, 2004
    Publication date: September 30, 2004
    Applicant: Scimed Life Systems, Inc.
    Inventors: David Lentz, Jamie Henderson, Edward Dormier, Richard Zdrahala, Gary Loomis, Ronald Rakos, Krzysztof Sowinski
  • Patent number: 6719783
    Abstract: An implantable microporous ePTFE tubular vascular graft exhibits long term patency, superior radial tensile strength and suture hole elongation resistance. The graft includes a first ePTFE tube and a second ePTFE tube circumferentially disposed over the first tube. The first ePTFE tube exhibits a porosity sufficient to promote cell endothelization, tissue ingrowth and healing. The second ePTFE tube exhibits enhanced radial strength in excess of the radial tensile strength of the first tube.
    Type: Grant
    Filed: August 5, 2002
    Date of Patent: April 13, 2004
    Assignee: SciMed Life Systems, Inc.
    Inventors: David Lentz, Jamie Henderson, Edward Dormier, Richard Zdrahala, Gary Loomis, Ronald Rakos, Krzysztof Sowinski
  • Publication number: 20030004559
    Abstract: An implantable microporous ePTFE tubular vascular graft exhibits long term patency, superior radial tensile strength and suture hole elongation resistance. The graft includes a first ePTFE tube and a second ePTFE tube circumferentially disposed over the first tube. The first ePTFE tube exhibits a porosity sufficient to promote cell endothelization, tissue ingrowth and healing. The second ePTFE tube exhibits enhanced radial strength in excess of the radial tensile strength of the first tube.
    Type: Application
    Filed: August 5, 2002
    Publication date: January 2, 2003
    Applicant: Scimed Life Systems, Inc.
    Inventors: David Lentz, Jamie Henderson, Edward Dormier, Richard Zdrahala, Gary Loomis, Ronald Rakos, Krzysztof Sowinski
  • Patent number: 6428571
    Abstract: An implantable microporous ePTFE tubular vascular graft exhibits long term patency, superior radial tensile strength and suture hole elongation resistance. The graft includes a first ePTFE tube and a second ePTFE tube circumferentially disposed over the first tube. The first ePTFE tube exhibits a porosity sufficient to promote cell endothelization, tissue ingrowth and healing. The second ePTFE tube exhibits enhanced radial strength in excess of the radial tensile strength of the first tube.
    Type: Grant
    Filed: March 14, 2000
    Date of Patent: August 6, 2002
    Assignee: Scimed Life Systems, Inc.
    Inventors: David Lentz, Jamie Henderson, Edward Dormier, Richard Zdrahala, Gary Loomis, Ronald Rakos, Krzysztof Sowinski
  • Patent number: 4857050
    Abstract: An air-in-line detector for use with an IV administration system comprises a light emitter positioned relative to a plurality of light sensors for receiving an IV tube therebetween. A comparator is connected with the light sensors to determine the relative intensity of light respectively incident on each sensor. Means connected with the comparator generates signals in accordance with the relative intensities to indicate whether an IV tube is present and, if so, whether there is fluid or air in the tube.
    Type: Grant
    Filed: September 23, 1987
    Date of Patent: August 15, 1989
    Assignee: Fisher Scientific Company
    Inventors: David Lentz, Larry Wilson, Curt Deckert
  • Patent number: 4850980
    Abstract: A cassette for use with an I.V. infusion pump has a housing with a first inlet, a second inlet, an outlet, and a port to the I.V. infusion pump. A valve body is positioned within the housing to selectively establish fluid communication from the first inlet to the port, or from the second inlet to the port, or from the port to the outlet. Movement of the valve body within the housing into yet another position allows for the free flow of fluid directly between the first inlet or the second inlet and the outlet.
    Type: Grant
    Filed: December 4, 1987
    Date of Patent: July 25, 1989
    Assignee: Fisher Scientific Company
    Inventors: David Lentz, Victor L. Bartholomew