Patents by Inventor David Lesage

David Lesage has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230310085
    Abstract: Systems and methods are disclosed for blood flow simulation. For example, a method may include performing a plurality of blood flow simulations using a first model of vascular blood flow, each of the plurality of blood flow simulations simulating blood flow in a vasculature of a patient or a geometry based on the vasculature of the patient; based on results of the plurality of blood flow simulations, generating a response surface mapping one or more first parameters of the first model to one or more second parameters of a reduced order model of vascular blood; determining values for the one or more parameters of the reduced order model mapped, by the response surface, from parameter values representing a modified state of the vasculature; and performing simulation using the reduced order model parameterized by the determined values, to determine a blood flow characteristic of the modified state of the vasculature.
    Type: Application
    Filed: June 6, 2023
    Publication date: October 5, 2023
    Inventors: Sethuraman SANKARAN, David LESAGE, Charles A. TAYLOR, Nan XIAO, Hyun Jin KIM, David SPAIN, Michiel SCHAAP
  • Patent number: 11707325
    Abstract: Systems and methods are disclosed for blood flow simulation. For example, a method may include performing a plurality of blood flow simulations using a first model of vascular blood flow, each of the plurality of blood flow simulations simulating blood flow in a vasculature of a patient or a geometry based on the vasculature of the patient; based on results of the plurality of blood flow simulations, generating a response surface mapping one or more first parameters of the first model to one or more second parameters of a reduced order model of vascular blood; determining values for the one or more parameters of the reduced order model mapped, by the response surface, from parameter values representing a modified state of the vasculature; and performing simulation using the reduced order model parameterized by the determined values, to determine a blood flow characteristic of the modified state of the vasculature.
    Type: Grant
    Filed: May 15, 2020
    Date of Patent: July 25, 2023
    Assignee: HeartFlow, Inc.
    Inventors: Sethuraman Sankaran, David Lesage, Charles Taylor, Nan Xiao, Hyun Jin Kim, David Spain, Michiel Schaap
  • Publication number: 20230196582
    Abstract: Systems and methods are disclosed for anatomic structure segmentation in image analysis, using a computer system. One method includes: receiving an annotation and a plurality of keypoints for an anatomic structure in one or more images; computing distances from the plurality of keypoints to a boundary of the anatomic structure; training a model, using data in the one or more images and the computed distances, for predicting a boundary in the anatomic structure in an image of a patient's anatomy; receiving the image of the patient's anatomy including the anatomic structure; estimating a segmentation boundary in the anatomic structure in the image of the patient's anatomy; and predicting, using the trained model, a boundary location in the anatomic structure in the image of the patient's anatomy by generating a regression of distances from keypoints in the anatomic structure in the image of the patient's anatomy to the estimated boundary.
    Type: Application
    Filed: February 21, 2023
    Publication date: June 22, 2023
    Inventors: Leo GRADY, Peter Kersten PETERSEN, Michiel SCHAAP, David LESAGE
  • Patent number: 11610318
    Abstract: Systems and methods are disclosed for anatomic structure segmentation in image analysis, using a computer system. One method includes: receiving an annotation and a plurality of keypoints for an anatomic structure in one or more images; computing distances from the plurality of keypoints to a boundary of the anatomic structure; training a model, using data in the one or more images and the computed distances, for predicting a boundary in the anatomic structure in an image of a patient's anatomy; receiving the image of the patient's anatomy including the anatomic structure; estimating a segmentation boundary in the anatomic structure in the image of the patient's anatomy; and predicting, using the trained model, a boundary location in the anatomic structure in the image of the patient's anatomy by generating a regression of distances from keypoints in the anatomic structure in the image of the patient's anatomy to the estimated boundary.
    Type: Grant
    Filed: March 17, 2021
    Date of Patent: March 21, 2023
    Assignee: HeartFlow, Inc.
    Inventors: Leo Grady, Peter Kersten Petersen, Michiel Schaap, David Lesage
  • Patent number: 11288813
    Abstract: Systems and methods are disclosed for anatomic structure segmentation in image analysis, using a computer system. One method includes: receiving an annotation and a plurality of keypoints for an anatomic structure in one or more images; computing distances from the plurality of keypoints to a boundary of the anatomic structure; training a model, using data in the one or more images and the computed distances, for predicting a boundary in the anatomic structure in an image of a patient's anatomy; receiving the image of the patient's anatomy including the anatomic structure; estimating a segmentation boundary in the anatomic structure in the image of the patient's anatomy; and predicting, using the trained model, a boundary location in the anatomic structure in the image of the patient's anatomy by generating a regression of distances from keypoints in the anatomic structure in the image of the patient's anatomy to the estimated boundary.
    Type: Grant
    Filed: August 11, 2021
    Date of Patent: March 29, 2022
    Assignee: HeartFlow, Inc.
    Inventors: Leo Grady, Peter Kersten Petersen, Michiel Schaap, David Lesage
  • Publication number: 20210374969
    Abstract: Systems and methods are disclosed for anatomic structure segmentation in image analysis, using a computer system. One method includes: receiving an annotation and a plurality of keypoints for an anatomic structure in one or more images; computing distances from the plurality of keypoints to a boundary of the anatomic structure; training a model, using data in the one or more images and the computed distances, for predicting a boundary in the anatomic structure in an image of a patient's anatomy; receiving the image of the patient's anatomy including the anatomic structure; estimating a segmentation boundary in the anatomic structure in the image of the patient's anatomy; and predicting, using the trained model, a boundary location in the anatomic structure in the image of the patient's anatomy by generating a regression of distances from keypoints in the anatomic structure in the image of the patient's anatomy to the estimated boundary.
    Type: Application
    Filed: August 11, 2021
    Publication date: December 2, 2021
    Inventors: Leo GRADY, Peter Kersten PETERSEN, Michiel SCHAAP, David LESAGE
  • Publication number: 20210225006
    Abstract: Systems and methods are disclosed for anatomic structure segmentation in image analysis, using a computer system. One method includes: receiving an annotation and a plurality of keypoints for an anatomic structure in one or more images; computing distances from the plurality of keypoints to a boundary of the anatomic structure; training a model, using data in the one or more images and the computed distances, for predicting a boundary in the anatomic structure in an image of a patient's anatomy; receiving the image of the patient's anatomy including the anatomic structure; estimating a segmentation boundary in the anatomic structure in the image of the patient's anatomy; and predicting, using the trained model, a boundary location in the anatomic structure in the image of the patient's anatomy by generating a regression of distances from keypoints in the anatomic structure in the image of the patient's anatomy to the estimated boundary.
    Type: Application
    Filed: March 17, 2021
    Publication date: July 22, 2021
    Inventors: Leo GRADY, Peter Kersten PETERSEN, Michiel SCHAAP, David LESAGE
  • Patent number: 10984535
    Abstract: Systems and methods are disclosed for anatomic structure segmentation in image analysis, using a computer system. One method includes: receiving an annotation and a plurality of keypoints for an anatomic structure in one or more images; computing distances from the plurality of keypoints to a boundary of the anatomic structure; training a model, using data in the one or more images and the computed distances, for predicting a boundary in the anatomic structure in an image of a patient's anatomy; receiving the image of the patient's anatomy including the anatomic structure; estimating a segmentation boundary in the anatomic structure in the image of the patient's anatomy; and predicting, using the trained model, a boundary location in the anatomic structure in the image of the patient's anatomy by generating a regression of distances from keypoints in the anatomic structure in the image of the patient's anatomy to the estimated boundary.
    Type: Grant
    Filed: September 8, 2020
    Date of Patent: April 20, 2021
    Assignee: HeartFlow, Inc.
    Inventors: Leo Grady, Peter Kersten Petersen, Michiel Schaap, David Lesage
  • Publication number: 20200402241
    Abstract: Systems and methods are disclosed for anatomic structure segmentation in image analysis, using a computer system. One method includes: receiving an annotation and a plurality of keypoints for an anatomic structure in one or more images; computing distances from the plurality of keypoints to a boundary of the anatomic structure; training a model, using data in the one or more images and the computed distances, for predicting a boundary in the anatomic structure in an image of a patient's anatomy; receiving the image of the patient's anatomy including the anatomic structure; estimating a segmentation boundary in the anatomic structure in the image of the patient's anatomy; and predicting, using the trained model, a boundary location in the anatomic structure in the image of the patient's anatomy by generating a regression of distances from keypoints in the anatomic structure in the image of the patient's anatomy to the estimated boundary.
    Type: Application
    Filed: September 8, 2020
    Publication date: December 24, 2020
    Applicant: Heartflow, Inc.
    Inventors: Leo GRADY, Peter Kersten PETERSEN, Michiel SCHAAP, David LESAGE
  • Publication number: 20200360088
    Abstract: Systems and methods are disclosed for blood flow simulation. For example, a method may include performing a plurality of blood flow simulations using a first model of vascular blood flow, each of the plurality of blood flow simulations simulating blood flow in a vasculature of a patient or a geometry based on the vasculature of the patient; based on results of the plurality of blood flow simulations, generating a response surface mapping one or more first parameters of the first model to one or more second parameters of a reduced order model of vascular blood; determining values for the one or more parameters of the reduced order model mapped, by the response surface, from parameter values representing a modified state of the vasculature; and performing simulation using the reduced order model parameterized by the determined values, to determine a blood flow characteristic of the modified state of the vasculature.
    Type: Application
    Filed: May 15, 2020
    Publication date: November 19, 2020
    Applicant: HeartFlow, Inc.
    Inventors: Sethuraman SANKARAN, David LESAGE, Charles TAYLOR, Nan XIAO, Hyun Jin KIM, David SPAIN, Michiel SCHAAP
  • Patent number: 10803592
    Abstract: Systems and methods are disclosed for anatomic structure segmentation in image analysis, using a computer system. One method includes: receiving an annotation and a plurality of keypoints for an anatomic structure in one or more images; computing distances from the plurality of keypoints to a boundary of the anatomic structure; training a model, using data in the one or more images and the computed distances, for predicting a boundary in the anatomic structure in an image of a patient's anatomy; receiving the image of the patient's anatomy including the anatomic structure; estimating a segmentation boundary in the anatomic structure in the image of the patient's anatomy; and predicting, using the trained model, a boundary location in the anatomic structure in the image of the patient's anatomy by generating a regression of distances from keypoints in the anatomic structure in the image of the patient's anatomy to the estimated boundary.
    Type: Grant
    Filed: May 9, 2018
    Date of Patent: October 13, 2020
    Assignee: Heartflow, Inc.
    Inventors: Leo Grady, Peter Kersten Petersen, Michiel Schaap, David Lesage
  • Publication number: 20180330506
    Abstract: Systems and methods are disclosed for anatomic structure segmentation in image analysis, using a computer system. One method includes: receiving an annotation and a plurality of keypoints for an anatomic structure in one or more images; computing distances from the plurality of keypoints to a boundary of the anatomic structure; training a model, using data in the one or more images and the computed distances, for predicting a boundary in the anatomic structure in an image of a patient's anatomy; receiving the image of the patient's anatomy including the anatomic structure; estimating a segmentation boundary in the anatomic structure in the image of the patient's anatomy; and predicting, using the trained model, a boundary location in the anatomic structure in the image of the patient's anatomy by generating a regression of distances from keypoints in the anatomic structure in the image of the patient's anatomy to the estimated boundary.
    Type: Application
    Filed: May 9, 2018
    Publication date: November 15, 2018
    Inventors: Leo GRADY, Peter Kersten Petersen, Michiel SCHAAP, David LESAGE
  • Patent number: 9157859
    Abstract: Efficient fluorescence detection is achieved by optically guiding fluorescence light generated by color centers within a sample to photodetectors outside the sample. A fluorescence detection system may use a sample containing one or more fluorescence color centers that emit fluorescent light when irradiated with excitation light from an optical source. The sample has an index of refraction greater than its surrounding medium. The sample may include one or more output faces and further include at least two opposing faces configured to internally reflect the fluorescent light emitted by the fluorescent color centers, and to optically guide the emitted fluorescent light to the one or more output faces. The fluorescence detection system may include one or more optical detector configured to receive fluorescent light emitted through the one or more output faces, and a microwave source configured to manipulate the electronic spin of the fluorescent color centers.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: October 13, 2015
    Assignee: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Ronald Walsworth, David Lesage
  • Patent number: 7711165
    Abstract: A method for segmenting coronary vessels in digitized cardiac images includes providing a digitized cardiac image, providing a seed point in the image, selecting a volume-of-interest about the seed point, performing a local segmentation in the volume-of-interest, including initializing a connected component with the seed point and a threshold intensity value to the intensity of the seed point, adding a point to the connected component if the point is adjacent to the connected component and if the intensity of the point is greater than or equal to the threshold value, lowering the threshold intensity value, and computing an attribute value of the connected component, wherein if a discontinuity in the attribute value is detected, the local segmentation is terminated, wherein a local segmentation mask of a vessel is obtained.
    Type: Grant
    Filed: July 19, 2006
    Date of Patent: May 4, 2010
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: David Lesage, Matthias Rasch
  • Publication number: 20070031019
    Abstract: A method for segmenting coronary vessels in digitized cardiac images includes providing a digitized cardiac image, providing a seed point in the image, selecting a volume-of-interest about the seed point, performing a local segmentation in the volume-of-interest, including initializing a connected component with the seed point and a threshold intensity value to the intensity of the seed point, adding a point to the connected component if the point is adjacent to the connected component and if the intensity of the point is greater than or equal to the threshold value, lowering the threshold intensity value, and computing an attribute value of the connected component, wherein if a discontinuity in the attribute value is detected, the local segmentation is terminated, wherein a local segmentation mask of a vessel is obtained.
    Type: Application
    Filed: July 19, 2006
    Publication date: February 8, 2007
    Inventors: David Lesage, Matthias Rasch