Patents by Inventor David Lieblich

David Lieblich has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170169577
    Abstract: A method includes obtaining first 3D imaging data for a volume of interest. The first 3D imaging data includes structural imaging data and a target tissue of interest. The method further includes obtaining 2D imaging data. The 2D imaging data includes structural imaging data for a plane of the volume of interest. The plane includes at least three fiducial markers of a set of fiducial markers. The method further includes locating a plane, including location and orientation, in the first 3D imaging data that corresponds to the plane of the 2D imaging data by matching the at least three fiducial markers with corresponding fiducial markers identified in the first 3D imaging data and using the map. The method further includes visually displaying the first 3D imaging data with the 2D imaging data superimposed over at the corresponding plane located in the first 3D imaging data.
    Type: Application
    Filed: November 27, 2013
    Publication date: June 15, 2017
    Inventors: Nicholas A Accomando, David Lieblich, John O'Connor, Louis Poulo
  • Publication number: 20170061654
    Abstract: Among other things, one or more techniques and/or systems are described for correcting projection data generated from a computed tomography (CT) examination of an object and/or for computing or updating a CT value of the object from the projection data. An image generator is configured to generate a CT image of an object under examination. Using this CT image, a set of actions are performed to correct projection data from which the CT image was generated and/or to update a CT value of one or more voxels within the CT image. In this way, the projection data and/or CT image is adjusted to reduce image artifacts and/or otherwise improve image quality and/or object detection.
    Type: Application
    Filed: August 24, 2015
    Publication date: March 2, 2017
    Inventors: Andrew Litvin, David Lieblich, Sergey Simanovsky
  • Patent number: 9390523
    Abstract: Z-effective (e.g., atomic number) values are generated for one or more sets of voxels in a CT density image using sparse (measured) multi-energy projection data. Voxels in the CT density image are assigned a starting z-effective value, causing a CT z-effective image to be generated from the CT density image. The accuracy of the assigned z-effective values is tested by forward projecting the CT z-effective image to generate synthetic multi-energy projection data and comparing the synthetic multi-energy projection data to the sparse multi-energy projection data. When the measure of similarity between the synthetic data and the sparse data is low, the z-effective value assigned to one or more voxels is modified until the measure of similarity is above a specified threshold (e.g., with an associated confidence score), at which point the z-effective values substantially reflect the z-effective values that would be obtained using a (more expensive) dual-energy CT imaging modality.
    Type: Grant
    Filed: May 1, 2012
    Date of Patent: July 12, 2016
    Assignee: ANALOGIC CORPORATION
    Inventors: Andrew Litvin, Ram Naidu, David Lieblich, Sergey Simanovsky
  • Publication number: 20150104089
    Abstract: Z-effective (e.g., atomic number) values are generated for one or more sets of voxels in a CT density image using sparse (measured) multi-energy projection data. Voxels in the CT density image are assigned a starting z-effective value, causing a CT z-effective image to be generated from the CT density image. The accuracy of the assigned z-effective values is tested by forward projecting the CT z-effective image to generate synthetic multi-energy projection data and comparing the synthetic multi-energy projection data to the sparse multi-energy projection data. When the measure of similarity between the synthetic data and the sparse data is low, the z-effective value assigned to one or more voxels is modified until the measure of similarity is above a specified threshold (e.g., with an associated confidence score), at which point the z-effective values substantially reflect the z-effective values that would be obtained using a (more expensive) dual-energy CT imaging modality.
    Type: Application
    Filed: May 1, 2012
    Publication date: April 16, 2015
    Applicant: Analogic Corporation
    Inventors: Andrew Litvin, Ram Naidu, David Lieblich, Sergey Simanovsky
  • Patent number: 7345478
    Abstract: A method and apparatus for detecting quadrupole nuclei in motion relative to a search region, during the sensing operation, provides a system for decreasing the throughput time of quadrupole resonance (QR) detection systems. The apparatus uses a single QR probe, or a plurality of QR probes, which may be formed into an array, to remotely and non-invasively generate a QR response from one or more targets containing quadrupole nuclei, as they pass through the probe-sensing region. The method employs an optimized pulse sequence that simultaneously increases the QR signal power while reducing the peak power of the RF pulses. The pulse sequence generates a matrix of signals that are processed to improve detection performance by increasing the signal to noise ratio.
    Type: Grant
    Filed: January 7, 2005
    Date of Patent: March 18, 2008
    Assignee: SIV Technologies, Inc.
    Inventors: David Lieblich, Jeffrey Schiano
  • Publication number: 20080018332
    Abstract: A method and apparatus for detecting quadrupole nuclei in motion relative to a search region, during the sensing operation, provides a system for decreasing the throughput time of quadrupole resonance (QR) detection systems. The apparatus uses a single QR probe, or a plurality of QR probes, which may be formed into an array, to remotely and non-invasively generate a QR response from one or more targets containing quadrupole nuclei, as they pass through the probe-sensing region. The method employs an optimized pulse sequence that simultaneously increases the QR signal power while reducing the peak power of the RF pulses. The pulse sequence generates a matrix of signals that are processed to improve detection performance by increasing the signal to noise ratio.
    Type: Application
    Filed: January 7, 2005
    Publication date: January 24, 2008
    Inventors: David Lieblich, Jeffrey Schiano