Patents by Inventor David Lynn Vesely

David Lynn Vesely has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9956267
    Abstract: C-natriuretic peptide (CNP) has been shown to regulate proliferation of mouse and rat osteoblasts. Genetic deletion of CNP results in dwarfism. CNP effects on bone growth involve inhibition of MEK 1 and ERK 1/2 kinases mediated via the intracellular messenger cyclic GMP. Vessel dilator is another natriuretic peptide synthesized by the atrial natriuretic peptide gene whose biologic half-life is 12 times longer than CNP. Vessel dilator's biologic effects on proliferating cells are mediated via inhibiting MEK 1/2 and ERK 1/2 kinases via cyclic GMP. Vessel dilator was not studied previously on osteoblasts. CNP and vessel dilator were tested in dose-response studies enhanced human osteoblasts' proliferation, showing that vessel dilator has identical mechanisms of action to CNP but much longer biologic half-life and effects at lower concentrations. Vessel dilator exhibited therapeutic effect for use in human achondroplasia, short stature and osteoporosis by stimulating osteoblast proliferation.
    Type: Grant
    Filed: December 23, 2015
    Date of Patent: May 1, 2018
    Assignees: University of South Florida, United States Department of Veterans Affairs
    Inventor: David Lynn Vesely
  • Publication number: 20160151460
    Abstract: C-natriuretic peptide (CNP) has been shown to regulate proliferation of mouse and rat osteoblasts. Genetic deletion of CNP results in dwarfism. CNP effects on bone growth involve inhibition of MEK 1 and ERK 1/2 kinases mediated via the intracellular messenger cyclic GMP. Vessel dilator is another natriuretic peptide synthesized by the atrial natriuretic peptide gene whose biologic half-life is 12 times longer than CNP. Vessel dilator's biologic effects on proliferating cells are mediated via inhibiting MEK 1/2 and ERK 1/2 kinases via cyclic GMP. Vessel dilator was not studied previously on osteoblasts. CNP and vessel dilator were tested in dose-response studies enhanced human osteoblasts' proliferation, showing that vessel dilator has identical mechanisms of action to CNP but much longer biologic half-life and effects at lower concentrations. Vessel dilator exhibited therapeutic effect for use in human achondroplasia, short stature and osteoporosis by stimulating osteoblast proliferation.
    Type: Application
    Filed: December 23, 2015
    Publication date: June 2, 2016
    Applicants: University of South Florida, United States Department of Veterans Affairs
    Inventor: David Lynn Vesely