Patents by Inventor David M. Aiken
David M. Aiken has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250058487Abstract: A blade assembly includes a blade support frame, and a plurality of V-shaped blades removably fastened to the blade support frame. The blade support frame has a food flow path extending downstream, and a plurality of blade mounts distributed around the food flow path. Each V-shaped blade has a first end portion connected to one of the blade mounts, a second end portion connected to another of the blade mounts, and an intermediate portion extending from the first end portion to the second end portion into the food flow path. At the first and second end portions of each V-shaped blade, a respective one of the blade mounts overlies both the upstream edge and the downstream edge of the V-shaped blade to inhibit the V-shaped blade from rotating when impacted by food.Type: ApplicationFiled: November 7, 2024Publication date: February 20, 2025Inventors: David M. Rogers, John Warren Aikens, Sylvain Bömont
-
Patent number: 11639874Abstract: Spectrometers include an optical assembly with optical elements arranged to receive light from a light source and direct the light along a light path to a multi-element detector, dispersing light of different wavelengths to different spatial locations on the multi-element detector. The optical assembly includes: (i) a collimator arranged in the light path to receive the light from the light source, the collimator including a mirror having a freeform surface; (2) a dispersive sub-assembly including an echelle grating, the dispersive sub-assembly being arranged in the light path to receive light from the collimator; and (3) a Schmidt telescope arranged in the light path to receive light from the dispersive sub-assembly and focus the light to a field, the multi-element detector being arranged at the field.Type: GrantFiled: October 14, 2021Date of Patent: May 2, 2023Assignee: PerkinElmer Health Sciences, Inc.Inventor: David M. Aikens
-
Publication number: 20220221340Abstract: Spectrometers include an optical assembly with optical elements arranged to receive light from a light source and direct the light along a light path to a multi-element detector, dispersing light of different wavelengths to different spatial locations on the multi-element detector. The optical assembly includes: (i) a collimator arranged in the light path to receive the light from the light source, the collimator including a mirror having a freeform surface; (2) a dispersive sub-assembly including an echelle grating, the dispersive sub-assembly being arranged in the light path to receive light from the collimator; and (3) a Schmidt telescope arranged in the light path to receive light from the dispersive sub-assembly and focus the light to a field, the multi-element detector being arranged at the field.Type: ApplicationFiled: October 14, 2021Publication date: July 14, 2022Inventor: David M. Aikens
-
Patent number: 9025142Abstract: A flow cell assembly for use in a liquid sample analyzer including a radiation source, a sensing device and a liquid sample source to supply a liquid sample includes an entrance joint member, a liquid core waveguide, a liquid sample feed tube, and an input optical fiber. The entrance joint member includes a waveguide receiving bore and a feed tube receiving bore. The liquid core waveguide is mounted in the waveguide receiving bore and defines a waveguide bore. The liquid sample feed tube is mounted in the feed tube receiving bore such that the liquid sample feed tube is in fluid communication with the waveguide bore to fluidly connect the liquid sample source to the waveguide bore. The input optical fiber is mounted in the entrance joint member to transmit radiation from the radiation source to the waveguide bore, which radiation is transmitted through the waveguide bore and the liquid sample therein to the sensing device.Type: GrantFiled: December 19, 2014Date of Patent: May 5, 2015Assignee: PerkinElmer Health Sciences, Inc.Inventors: Gregory Hanlon, Timothy Neal, Richard Edwards, Joseph L. DiCesare, David M. Aikens
-
Publication number: 20150103339Abstract: A flow cell assembly for use in a liquid sample analyzer including a radiation source, a sensing device and a liquid sample source to supply a liquid sample includes an entrance joint member, a liquid core waveguide, a liquid sample feed tube, and an input optical fiber. The entrance joint member includes a waveguide receiving bore and a feed tube receiving bore. The liquid core waveguide is mounted in the waveguide receiving bore and defines a waveguide bore. The liquid sample feed tube is mounted in the feed tube receiving bore such that the liquid sample feed tube is in fluid communication with the waveguide bore to fluidly connect the liquid sample source to the waveguide bore. The input optical fiber is mounted in the entrance joint member to transmit radiation from the radiation source to the waveguide bore, which radiation is transmitted through the waveguide bore and the liquid sample therein to the sensing device.Type: ApplicationFiled: December 19, 2014Publication date: April 16, 2015Inventors: Gregory Hanlon, Timothy Neal, Richard Edwards, Joseph L. DiCesare, David M. Aikens
-
Patent number: 8947654Abstract: A flow cell assembly for use in a liquid sample analyzer including a radiation source, a sensing device and a liquid sample source to supply a liquid sample includes an entrance joint member, a liquid core waveguide, a liquid sample feed tube, and an input optical fiber. The entrance joint member includes a waveguide receiving bore and a feed tube receiving bore. The liquid core waveguide is mounted in the waveguide receiving bore and defines a waveguide bore. The liquid sample feed tube is mounted in the feed tube receiving bore such that the liquid sample feed tube is in fluid communication with the waveguide bore to fluidly connect the liquid sample source to the waveguide bore. The input optical fiber is mounted in the entrance joint member to transmit radiation from the radiation source to the waveguide bore, which radiation is transmitted through the waveguide bore and the liquid sample therein to the sensing device.Type: GrantFiled: May 19, 2014Date of Patent: February 3, 2015Assignee: PerkinElmer Health Sciences, Inc.Inventors: Gregory Hanlon, Timothy Neal, Richard Edwards, Joseph L. DiCesare, David M. Aikens
-
Publication number: 20140253916Abstract: A flow cell assembly for use in a liquid sample analyzer including a radiation source, a sensing device and a liquid sample source to supply a liquid sample includes an entrance joint member, a liquid core waveguide, a liquid sample feed tube, and an input optical fiber. The entrance joint member includes a waveguide receiving bore and a feed tube receiving bore. The liquid core waveguide is mounted in the waveguide receiving bore and defines a waveguide bore. The liquid sample feed tube is mounted in the feed tube receiving bore such that the liquid sample feed tube is in fluid communication with the waveguide bore to fluidly connect the liquid sample source to the waveguide bore. The input optical fiber is mounted in the entrance joint member to transmit radiation from the radiation source to the waveguide bore, which radiation is transmitted through the waveguide bore and the liquid sample therein to the sensing device.Type: ApplicationFiled: May 19, 2014Publication date: September 11, 2014Applicant: PerkinElmer Health Sciences, Inc.Inventors: Gregory Hanlon, Timothy Neal, Richard Edwards, Joseph L. DiCesare, David M. Aikens
-
Patent number: 8797528Abstract: A flow cell assembly for use in a liquid sample analyzer including a radiation source, a sensing device and a liquid sample source to supply a liquid sample includes an entrance joint member, a liquid core waveguide, a liquid sample feed tube, and an input optical fiber. The entrance joint member includes a waveguide receiving bore and a feed tube receiving bore. The liquid core waveguide is mounted in the waveguide receiving bore and defines a waveguide bore. The liquid sample feed tube is mounted in the feed tube receiving bore such that the liquid sample feed tube is in fluid communication with the waveguide bore to fluidly connect the liquid sample source to the waveguide bore. The input optical fiber is mounted in the entrance joint member to transmit radiation from the radiation source to the waveguide bore, which radiation is transmitted through the waveguide bore and the liquid sample therein to the sensing device.Type: GrantFiled: February 28, 2013Date of Patent: August 5, 2014Assignee: PerkinElmer Health Sciences, Inc.Inventors: Gregory Hanlon, Timothy Neal, Richard Edwards, Joseph L. DiCesare, David M. Aikens
-
Publication number: 20140104605Abstract: A flow cell assembly for use in a liquid sample analyzer including a radiation source, a sensing device and a liquid sample source to supply a liquid sample includes an entrance joint member, a liquid core waveguide, a liquid sample feed tube, and an input optical fiber. The entrance joint member includes a waveguide receiving bore and a feed tube receiving bore. The liquid core waveguide is mounted in the waveguide receiving bore and defines a waveguide bore. The liquid sample feed tube is mounted in the feed tube receiving bore such that the liquid sample feed tube is in fluid communication with the waveguide bore to fluidly connect the liquid sample source to the waveguide bore. The input optical fiber is mounted in the entrance joint member to transmit radiation from the radiation source to the waveguide bore, which radiation is transmitted through the waveguide bore and the liquid sample therein to the sensing device.Type: ApplicationFiled: February 28, 2013Publication date: April 17, 2014Applicant: PerkinElmer Health Sciences, Inc.Inventors: Gregory Hanlon, Timothy Neal, Richard Edwards, Joseph L. DiCesare, David M. Aikens
-
Patent number: 8543557Abstract: An optical metrology includes a library, a metrology tool and a library evolution tool. The library is generated to include a series of predicted measurements. Each predicted measurement is intended to match the measurements that a metrology device would record when analyzing a corresponding physical structure. The metrology tool compares its empirical measurements to the predicted measurements in the library. If a match is found, the metrology tool extracts a description of the corresponding physical structure from the library. The library evolution tool operates to improve the efficiency of the library. To make these improvements, the library evolution tool statistically analyzes the usage pattern of the library. Based on this analysis, the library evolution tool increases the resolution of commonly used portions of the library. The library evolution tool may also optionally reduce the resolution of less used portions of the library.Type: GrantFiled: April 1, 2005Date of Patent: September 24, 2013Assignee: KLA-Tencor CorporationInventors: David M. Aikens, Youxian Wen, Walter Lee Smith
-
Publication number: 20120160685Abstract: A process for forming a multilayer composite coating on a substrate is provided. The process includes forming an electrodeposition coating layer on the substrate by electrodeposition of a curable electrodepositable coating composition over at least a portion of the substrate. Optionally, the coated substrate is heated to a temperature and for a time sufficient to cure the electrodeposition coating layer. A basecoating layer is formed on the electrodeposition coating layer by depositing an aqueous curable basecoating composition directly onto at least a portion of the electrodeposition coating layer. Optionally, the basecoating layer is dehydrated. A top coating layer is formed on the basecoating layer by depositing a curable top coating composition which is substantially pigment-free directly onto at least a portion of the basecoating layer. The top coating layer, the basecoating layer, and, optionally, the electrodeposition coating layer are cured simultaneously.Type: ApplicationFiled: January 31, 2012Publication date: June 28, 2012Applicant: PPG INDUSTRIES OHIO, INC.Inventors: Sean Purdy, Dennis A. Simpson, Richard J. Foukes, David M. Aiken, James P. Rowley, Leigh Ann Humbert
-
Patent number: 8152982Abstract: A process for forming a multilayer composite coating on a substrate is provided. The process includes forming an electrodeposition coating layer on the substrate by electrodeposition of a curable electrodepositable coating composition over at least a portion of the substrate. Optionally, the coated substrate is heated to a temperature and for a time sufficient to cure the electrodeposition coating layer. A basecoating layer is formed on the electrodeposition coating layer by depositing an aqueous curable basecoating composition directly onto at least a portion of the electrodeposition coating layer. Optionally, the basecoating layer is dehydrated. A top coating layer is formed on the basecoating layer by depositing a curable top coating composition which is substantially pigment-free directly onto at least a portion of the basecoating layer. The top coating layer, the basecoating layer, and, optionally, the electrodeposition coating layer are cured simultaneously.Type: GrantFiled: February 27, 2009Date of Patent: April 10, 2012Inventors: Sean Purdy, Dennis A. Simpson, Richard J. Foukes, David M. Aiken, James P. Rowley, Leigh Ann Humbert
-
Publication number: 20090173633Abstract: A process for forming a multilayer composite coating on a substrate is provided. The process includes forming an electrodeposition coating layer on the substrate by electrodeposition of a curable electrodepositable coating composition over at least a portion of the substrate. Optionally, the coated substrate is heated to a temperature and for a time sufficient to cure the electrodeposition coating layer. A basecoating layer is formed on the electrodeposition coating layer by depositing an aqueous curable basecoating composition directly onto at least a portion of the electrodeposition coating layer. Optionally, the basecoating layer is dehydrated. A top coating layer is formed on the basecoating layer by depositing a curable top coating composition which is substantially pigment-free directly onto at least a portion of the basecoating layer. The top coating layer, the basecoating layer, and, optionally, the electrodeposition coating layer are cured simultaneously.Type: ApplicationFiled: February 27, 2009Publication date: July 9, 2009Applicant: PPG Industries Ohio, Inc.Inventors: Sean Purdy, Dennis A. Simpson, Richard J. Foukes, David M. Aiken, James P. Rowley, Leigh Ann Humbert
-
Patent number: 7154607Abstract: A flat spectrum illumination source for use in optical metrology systems includes a first light source generating a visible light beam and a second light source generating an ultraviolet light beam. The illumination source also includes an auxiliary light source generating a light beam at wavelengths between the visible light beam and the ultraviolet light beam. The three light beams are combined to provide a broadband probe beam that has substantially even illumination levels across a broad range of wavelengths. Alternately, the illumination source may be fabricated as an array of light emitting diodes selected to cover a range of separate wavelengths. The outputs of the LED array are combined to produce the broadband probe beam.Type: GrantFiled: November 3, 2003Date of Patent: December 26, 2006Assignee: Therma-Wave, Inc.Inventors: James Lee Hendrix, David Y. Wang, David M. Aikens, Lawrence Rotter, Joel Ng
-
Patent number: 6898596Abstract: An optical metrology includes a library, a metrology tool and a library evolution tool. The library is generated to include a series of predicted measurements. Each predicted measurement is intended to match the measurements that a metrology device would record when analyzing a corresponding physical structure. The metrology tool compares its empirical measurements to the predicted measurements in the library. If a match is found, the metrology tool extracts a description of the corresponding physical structure from the library. The library evolution tool operates to improve the efficiency of the library. To make these improvements, the library evolution tool statistically analyzes the usage pattern of the library. Based on this analysis, the library evolution tool increases the resolution of commonly used portions of the library. The library evolution tool may also optionally reduce the resolution of less used portions of the library.Type: GrantFiled: May 14, 2002Date of Patent: May 24, 2005Assignee: Therma-Wave, Inc.Inventors: David M. Aikens, Youxian Wen, Walter Lee Smith
-
Patent number: 6879449Abstract: The subject invention relates to broadband optical metrology tools for performing measurements of patterned thin films on semiconductor integrated circuits. Particularly a family of optical designs for broadband, multi-wavelength, DUV-IR (185<?<900 nm) all-refractive optical systems. The designs have net focusing power and this is achieved by combining at least one positively powered optical element with one negatively powered optical element. The designs have small spot-size over the wavelength range spanning 185-900 nm with substantially reduced spherical aberration, axial color, sphero-chromatism and zonal spherical aberration. The refractive optical systems are broadly applicable to a large class of broadband optical wafer metrology tools including spectrophotometers, spectroscopic reflectometers, spectroscopic ellipsometers and spectroscopic scatterometers.Type: GrantFiled: May 2, 2003Date of Patent: April 12, 2005Assignee: Therma-Wave, Inc.Inventors: David Y. Wang, David M. Aikens
-
Patent number: 6862090Abstract: A method and apparatus for combining the spectral outputs of multiple light sources to provide a high-efficiency broad-band illuminator for optical metrology is disclosed. The illuminator combines the output radiation from a plurality of broad-band lamps in a novel optical arrangement that creates a virtual source and avoids the use of beam-splitters. Consequently, the illuminator offers increased performance at reduced cost. The illuminator can be optimized and configured for application in a broad class of optical metrology instruments.Type: GrantFiled: August 9, 2001Date of Patent: March 1, 2005Assignee: Therma-Wave, Inc.Inventors: Jianhui Chen, David M. Aikens
-
Publication number: 20040159555Abstract: A process for forming a multilayer composite coating on a substrate is provided. The process includes forming an electrodeposition coating layer on the substrate by electrodeposition of a curable electrodepositable coating composition over at least a portion of the substrate. Optionally, the coated substrate is heated to a temperature and for a time sufficient to cure the electrodeposition coating layer. A basecoating layer is formed on the electrodeposition coating layer by depositing an aqueous curable basecoating composition directly onto at least a portion of the electrodeposition coating layer. Optionally, the basecoating layer is dehydrated. A top coating layer is formed on the basecoating layer by depositing a curable top coating composition which is substantially pigment-free directly onto at least a portion of the basecoating layer. The top coating layer, the basecoating layer, and, optionally, the electrodeposition coating layer are cured simultaneously.Type: ApplicationFiled: February 13, 2003Publication date: August 19, 2004Inventors: Sean Purdy, Dennis A. Simpson, Richard J. Foukes, David M. Aiken, James P. Rowley
-
Publication number: 20040150828Abstract: A flat spectrum illumination source for use in optical metrology systems includes a first light source generating a visible light beam and a second light source generating an ultraviolet light beam. The illumination source also includes an auxiliary light source generating a light beam at wavelengths between the visible light beam and the ultraviolet light beam. The three light beams are combined to provide a broadband probe beam that has substantially even illumination levels across a broad range of wavelengths. Alternately, the illumination source may be fabricated as an array of light emitting diodes selected to cover a range of separate wavelengths. The outputs of the LED array are combined to produce the broadband probe beam.Type: ApplicationFiled: November 3, 2003Publication date: August 5, 2004Inventors: James Lee Hendrix, David Y. Wang, David M. Aikens, Lawrence Rotter, Joel Ng
-
Patent number: 6744505Abstract: The subject invention relates to the design of a compact imaging spectrometer for use in thin film measurement and general spectroscopic applications. The spectrometer includes only two elements, a rotationally symmetric aspheric reflector and a plane grating. When employed in a pupil centric geometry the spectrometer has no coma or image distortion. Both spherical aberration and astigmatism can be independently corrected.Type: GrantFiled: July 30, 2002Date of Patent: June 1, 2004Assignee: Therma-Wave, Inc.Inventors: David Y. Wang, David M. Aikens