Patents by Inventor David M. Bevly

David M. Bevly has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230343221
    Abstract: Technologies for platooned include a leader vehicle and one or more follower vehicles each including a computing device. The leader vehicle computing device controls velocity of the leader vehicle within a predetermined route based on a grade profile of the predetermined route. The leader vehicle may perform nonlinear model predictive control using a cost function based on predicted velocity error and predicted fuel consumption. The follower vehicle computing device controls velocity of the follower vehicle within the predetermined route based on headway distance to the leader vehicle and the grade profile. The follower vehicle may perform nonlinear model predictive control using a cost function based on predicted headway error, predicted headway rate of change, and predicted fuel consumption. Other embodiments are described and claimed.
    Type: Application
    Filed: April 21, 2023
    Publication date: October 26, 2023
    Inventors: Jacob Ward, Evan Stegner, Mark A. Hoffman, David M. Bevly
  • Patent number: 11719830
    Abstract: A navigation system for a mobile object generates navigation data for the mobile object based on satellite navigation signals received from a plurality of satellites and base data received from a stationary base station. The navigation data includes code phase estimates and carrier phase estimates for the plurality of satellites. The system computes position, velocity and time estimates for the mobile object in accordance with the code phase estimates and carrier phase estimates, and performs a navigation function for the mobile object in accordance with the position, velocity and time estimates. The system generates code phase estimates by performing a Vector Delay Locked Loop (VDLL) computation process that drives a code NCO for each channel of a plurality of channels, and generates carrier phase estimates for the plurality of satellites by performing a RTK Vector Phase Locked Loop computation process that drives a carrier NCO for each channel.
    Type: Grant
    Filed: April 5, 2021
    Date of Patent: August 8, 2023
    Assignees: Deere & Company, Auburn University c/o Office of Innovation Advancement and Commercialization
    Inventors: Scott M. Martin, David M. Bevly, Richard G. Keegan, Stephen F. Rounds
  • Publication number: 20210311206
    Abstract: A navigation system for a mobile object generates navigation data for the mobile object based on satellite navigation signals received from a plurality of satellites and base data received from a stationary base station. The navigation data includes code phase estimates and carrier phase estimates for the plurality of satellites. The system computes position, velocity and time estimates for the mobile object in accordance with the code phase estimates and carrier phase estimates, and performs a navigation function for the mobile object in accordance with the position, velocity and time estimates. The system generates code phase estimates by performing a Vector Delay Locked Loop (VDLL) computation process that drives a code NCO for each channel of a plurality of channels, and generates carrier phase estimates for the plurality of satellites by performing a RTK Vector Phase Locked Loop computation process that drives a carrier NCO for each channel.
    Type: Application
    Filed: April 5, 2021
    Publication date: October 7, 2021
    Inventors: Scott M. Martin, David M. Bevly, Richard G. Keegan, Stephen F. Rounds
  • Patent number: 10969496
    Abstract: A system for navigating a mobile object generates satellite navigation data for the mobile object based on satellite navigation signals received from a plurality of satellites and base data received from a stationary base station. The satellite navigation data for the mobile object includes code phase estimates and carrier phase estimates for the plurality of satellites. The system computes position, velocity and time estimates for the mobile object in accordance with the code phase estimates and carrier phase estimates, and performs a navigation function for the mobile object in accordance with the computed position, velocity and time estimates for the mobile object. The system generates the code phase estimates by performing a Vector Delay Locked Loop (VDLL) computation process, and generates carrier phase estimates for the plurality of satellites including by performing a Real-Time-Kinematics Vector Phase Locked Loop (RTK-VPLL) computation process.
    Type: Grant
    Filed: October 11, 2018
    Date of Patent: April 6, 2021
    Assignees: DEERE & COMPANY, AUBURN UNIVERSITY
    Inventors: Scott M. Martin, David M. Bevly, Richard G. Keegan, Stephen F. Rounds
  • Publication number: 20190120973
    Abstract: A system for navigating a mobile object generates satellite navigation data for the mobile object based on satellite navigation signals received from a plurality of satellites and base data received from a stationary base station. The satellite navigation data for the mobile object includes code phase estimates and carrier phase estimates for the plurality of satellites. The system computes position, velocity and time estimates for the mobile object in accordance with the code phase estimates and carrier phase estimates, and performs a navigation function for the mobile object in accordance with the computed position, velocity and time estimates for the mobile object. The system generates the code phase estimates by performing a Vector Delay Locked Loop (VDLL) computation process, and generates carrier phase estimates for the plurality of satellites including by performing a Real-Time-Kinematics Vector Phase Locked Loop (RTK-VPLL) computation process.
    Type: Application
    Filed: October 11, 2018
    Publication date: April 25, 2019
    Inventors: Scott M. Martin, David M. Bevly, Richard G. Keegan, Stephen F. Rounds
  • Patent number: 9403415
    Abstract: A system and method for sensing vehicle global pitch angle and rate that uses global velocities measured from a single antenna global positioning system (GPS) receiver together with sensor fusion algorithms involving sensor signals and other computed signals. This constructed, or computed, vehicle body's pitch angle may replace the role of a pitch rate sensor in an integrated stability control system. Namely, it achieves enhanced vehicle state estimation without the need for a pitch rate sensor.
    Type: Grant
    Filed: September 23, 2010
    Date of Patent: August 2, 2016
    Assignee: Ford Global Technologies
    Inventors: Jianbo Lu, Dimitar Petrov Filev, Kwaku O. Prakah-Asante, David M. Bevly, Jonathan Ryan
  • Publication number: 20110087398
    Abstract: A system and method for sensing vehicle global pitch angle and rate that uses global velocities measured from a single antenna global positioning system (GPS) receiver together with sensor fusion algorithms involving sensor signals and other computed signals. This constructed, or computed, vehicle body's pitch angle may replace the role of a pitch rate sensor in an integrated stability control system. Namely, it achieves enhanced vehicle state estimation without the need for a pitch rate sensor.
    Type: Application
    Filed: September 23, 2010
    Publication date: April 14, 2011
    Inventors: Jianbo Lu, Dimitar Petrov Filev, Kwaku O. Prakah-Asante, David M. Bevly, Jonathan Ryan
  • Patent number: 6681180
    Abstract: A method for determining a sideslip angle of a terrestrial vehicle that moves on wheels by using a global positioning system (GPS) receiver. The GPS receiver is mounted in the vehicle and measures the horizontal velocity of the vehicle as well as its attitude. The sideslip angle of the vehicle at the GPS receiver is obtained from these measurements. The body sideslip angle and tire sideslip angles are derived by translating the sideslip angle at the GPS receiver to the center of gravity and to the wheels. Alternatively, an on-board gyroscope is provided for measuring vehicle attitude while the horizontal velocity is obtained from the GPS receiver. The method is extended to derive wheel slip and tire cornering stiffness. The vehicle states derived by the method can be used in a stability control system for stabilizing the motion of the vehicle.
    Type: Grant
    Filed: January 29, 2002
    Date of Patent: January 20, 2004
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: David M. Bevly, Joseph C. Gerdes
  • Publication number: 20020198655
    Abstract: A method for determining a sideslip angle of a terrestrial vehicle that moves on wheels by using a global positioning system (GPS) receiver. The GPS receiver is mounted in the vehicle and measures the horizontal velocity of the vehicle as well as its attitude. The sideslip angle of the vehicle at the GPS receiver is obtained from these measurements. The body sideslip angle and tire sideslip angles are derived by translating the sideslip angle at the GPS receiver to the center of gravity and to the wheels. Alternatively, an on-board gyroscope is provided for measuring vehicle attitude while the horizontal velocity is obtained from the GPS receiver. The method is extended to derive wheel slip and tire cornering stiffness. The vehicle states derived by the method can be used in a stability control system for stabilizing the motion of the vehicle.
    Type: Application
    Filed: January 29, 2002
    Publication date: December 26, 2002
    Inventors: David M. Bevly, Joseph C. Gerdes