Patents by Inventor David M. Bierman

David M. Bierman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240150183
    Abstract: A silica aerogel having a mean pore size less than 5 nm with a standard deviation of 3 nm. The silica aerogel may have greater than 95% solar-weighted transmittance at a thickness of 8 mm for wavelengths in the range of 250 nm to 2500 nm, and a 400° C. black-body weighted specific extinction coefficient of greater than 8 m2/kg for wavelengths of 1.5 ?m to 15 ?m. Silica aerogel synthesis methods are described. A solar thermal aerogel receiver (STAR) may include an opaque frame defining an opening, an aerogel layer disposed in the opaque frame, with at least a portion of the aerogel layer being proximate the opening, and a heat transfer fluid pipe in thermal contact with and proximate the aerogel layer. A concentrating solar energy system may include a STAR and at least one reflector to direct sunlight to an opening in the STAR.
    Type: Application
    Filed: November 14, 2023
    Publication date: May 9, 2024
    Inventors: Gang Chen, Evelyn N. Wang, Svetlana Boriskina, Lee A. Weinstein, Sungwoo Yang, Bikramjit S. Bhatia, Lin Zhao, Elise M. Strobach, Thomas A. Cooper, David M. Bierman, Xiaopeng Huang, James Loomis
  • Patent number: 11851334
    Abstract: A silica aerogel having a mean pore size less than 5 nm with a standard deviation of 3 nm. The silica aerogel may have greater than 95% solar-weighted transmittance at a thickness of 8 mm for wavelengths in the range of 250 nm to 2500 nm, and a 400° C. black-body weighted specific extinction coefficient of greater than 8 m2/kg for wavelengths of 1.5 ?m to 15 ?m. Silica aerogel synthesis methods are described. A solar thermal aerogel receiver (STAR) may include an opaque frame defining an opening, an aerogel layer disposed in the opaque frame, with at least a portion of the aerogel layer being proximate the opening, and a heat transfer fluid pipe in thermal contact with and proximate the aerogel layer. A concentrating solar energy system may include a STAR and at least one reflector to direct sunlight to an opening in the STAR.
    Type: Grant
    Filed: November 6, 2020
    Date of Patent: December 26, 2023
    Assignee: Massachusetts Institute of Technology
    Inventors: Gang Chen, Evelyn N. Wang, Svetlana Boriskina, Lee A. Weinstein, Sungwoo Yang, Bikramjit S. Bhatia, Lin Zhao, Elise M. Strobach, Thomas A. Cooper, David M. Bierman, Xiaopeng Huang, James Loomis
  • Publication number: 20210094834
    Abstract: A silica aerogel having a mean pore size less than 5 nm with a standard deviation of 3 nm. The silica aerogel may have greater than 95% solar-weighted transmittance at a thickness of 8 mm for wavelengths in the range of 250 nm to 2500 nm, and a 400° C. black-body weighted specific extinction coefficient of greater than 8 m2/kg for wavelengths of 1.5 ?m to 15 ?m. Silica aerogel synthesis methods are described. A solar thermal aerogel receiver (STAR) may include an opaque frame defining an opening, an aerogel layer disposed in the opaque frame, with at least a portion of the aerogel layer being proximate the opening, and a heat transfer fluid pipe in thermal contact with and proximate the aerogel layer. A concentrating solar energy system may include a STAR and at least one reflector to direct sunlight to an opening in the STAR.
    Type: Application
    Filed: November 6, 2020
    Publication date: April 1, 2021
    Inventors: Gang Chen, Evelyn N. Wang, Svetlana Boriskina, Lee A. Weinstein, Sungwoo Yang, Bikramjit S. Bhatia, Lin Zhao, Elise M. Strobach, Thomas A. Cooper, David M. Bierman, Xiaopeng Huang, James Loomis
  • Patent number: 10889501
    Abstract: A silica aerogel having a mean pore size less than 5 nm with a standard deviation of 3 nm. The silica aerogel may have greater than 95% solar-weighted transmittance at a thickness of 8 mm for wavelengths in the range of 250 nm to 2500 nm, and a 400° C. black-body weighted specific extinction coefficient of greater than 8 m2/kg for wavelengths of 1.5 ?m to 15 ?m. Silica aerogel synthesis methods are described. A solar thermal aerogel receiver (STAR) may include an opaque frame defining an opening, an aerogel layer disposed in the opaque frame, with at least a portion of the aerogel layer being proximate the opening, and a heat transfer fluid pipe in thermal contact with and proximate the aerogel layer. A concentrating solar energy system may include a STAR and at least one reflector to direct sunlight to an opening in the STAR.
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: January 12, 2021
    Assignee: Massachusetts Institute of Technology
    Inventors: Gang Chen, Evelyn N. Wang, Svetlana Boriskina, Lee A. Weinstein, Sungwoo Yang, Bikramjit S. Bhatia, Lin Zhao, Elise M. Strobach, Thomas A. Cooper, David M. Bierman, Xiaopeng Huang, James Loomis
  • Publication number: 20190100439
    Abstract: A silica aerogel having a mean pore size less than 5 nm with a standard deviation of 3 nm. The silica aerogel may have greater than 95% solar-weighted transmittance at a thickness of 8 mm for wavelengths in the range of 250 nm to 2500 nm, and a 400° C. black-body weighted specific extinction coefficient of greater than 8 m2/kg for wavelengths of 1.5 ?m to 15 ?m. Silica aerogel synthesis methods are described. A solar thermal aerogel receiver (STAR) may include an opaque frame defining an opening, an aerogel layer disposed in the opaque frame, with at least a portion of the aerogel layer being proximate the opening, and a heat transfer fluid pipe in thermal contact with and proximate the aerogel layer. A concentrating solar energy system may include a STAR and at least one reflector to direct sunlight to an opening in the STAR.
    Type: Application
    Filed: February 24, 2017
    Publication date: April 4, 2019
    Inventors: Gang Chen, Evelyn N. Wang, Svetlana Boriskina, Lee A. Weinstein, Sungwoo Yang, Bikramjit S. Bhatia, Lin Zhao, Elise M. Strobach, Thomas A. Cooper, David M. Bierman, Xiaopeng Huang, James Loomis