Patents by Inventor David M. Broadway

David M. Broadway has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10580706
    Abstract: A system deposits a film on a substrate while determining mechanical stress experienced by the film. A substrate is provided in a deposition chamber. A support disposed in the chamber supports a circular portion of the substrate with a first surface of the substrate facing a deposition source and a second surface being reflective. An optical displacement sensor is positioned in the deposition chamber in a spaced-apart relationship with respect to a portion of the substrate's second surface located at approximately the center of the circular portion of the substrate. When the deposition source deposits a film on the first surface, a displacement of the substrate is measured using the optical displacement sensor. A processor is programmed to use the substrate displacement to determine a radius of curvature of the substrate, and to use the radius of curvature to determine mechanical stress experienced by the film during deposition.
    Type: Grant
    Filed: February 6, 2017
    Date of Patent: March 3, 2020
    Assignee: United States of America as represented by the Administrator of NASA
    Inventor: David M. Broadway
  • Patent number: 10214446
    Abstract: A coated article includes a temperable antireflection (AR) coating that utilizes medium and low index (index of refraction “n”) layers having compressive residual stress in the AR coating. In certain example embodiments, the coating may include the following layers from the glass substrate outwardly: silicon oxynitride (SiOxNy) medium index layer/high index layer/low index layer. In certain example embodiments, depending on the chemical and optical properties of the high index layer and the substrate, the medium and low index layers of the AR coating are selected to cause a net compressive residual stress and thus optimize the overall performance of the antireflection coating when the coated article is tempered and/or heat-treated.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: February 26, 2019
    Assignee: Guardian Glass, LLC
    Inventors: David M. Broadway, Yiwei Lu
  • Publication number: 20180057398
    Abstract: A coated article includes a temperable antireflection (AR) coating that utilizes medium and low index (index of refraction “n”) layers having compressive residual stress in the AR coating. In certain example embodiments, the coating may include the following layers from the glass substrate outwardly: silicon oxynitride (SiOxNy) medium index layer/high index layer/low index layer. In certain example embodiments, depending on the chemical and optical properties of the high index layer and the substrate, the medium and low index layers of the AR coating are selected to cause a net compressive residual stress and thus optimize the overall performance of the antireflection coating when the coated article is tempered and/or heat-treated.
    Type: Application
    Filed: October 24, 2017
    Publication date: March 1, 2018
    Inventors: David M. BROADWAY, Yiwei LU
  • Patent number: 9796619
    Abstract: A coated article includes a temperable antireflection (AR) coating that utilizes medium and low index (index of refraction “n”) layers having compressive residual stress in the AR coating. In certain example embodiments, the coating may include the following layers from the glass substrate outwardly: silicon oxynitride (SiOxNy) medium index layer/high index layer/low index layer. In certain example embodiments, depending on the chemical and optical properties of the high index layer and the substrate, the medium and low index layers of the AR coating are selected to cause a net compressive residual stress.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: October 24, 2017
    Assignee: Guardian Glass, LLC
    Inventors: David M. Broadway, Yiwei Lu
  • Publication number: 20170148690
    Abstract: A system deposits a film on a substrate while determining mechanical stress experienced by the film. A substrate is provided in a deposition chamber. A support disposed in the chamber supports a circular portion of the substrate with a first surface of the substrate facing a deposition source and a second surface being reflective. An optical displacement sensor is positioned in the deposition chamber in a spaced-apart relationship with respect to a portion of the substrate's second surface located at approximately the center of the circular portion of the substrate. When the deposition source deposits a film on the first surface, a displacement of the substrate is measured using the optical displacement sensor. A processor is programmed to use the substrate displacement to determine a radius of curvature of the substrate, and to use the radius of curvature to determine mechanical stress experienced by the film during deposition.
    Type: Application
    Filed: February 6, 2017
    Publication date: May 25, 2017
    Inventor: David M. Broadway
  • Patent number: 9601391
    Abstract: A method and system are provided for determining mechanical stress experienced by a film during fabrication thereof on a substrate positioned in a vacuum deposition chamber. The substrate's first surface is disposed to have the film deposited thereon and the substrate's opposing second surface is a specular reflective surface. A portion of the substrate is supported. An optical displacement sensor is positioned in the vacuum deposition chamber in a spaced-apart relationship with respect to a portion of the substrate's second surface. During film deposition on the substrate's first surface, displacement of the portion of the substrate's second surface is measured using the optical displacement sensor. The measured displacement is indicative of a radius of curvature of the substrate, and the radius of curvature is indicative of mechanical stress being experienced by the film.
    Type: Grant
    Filed: March 12, 2015
    Date of Patent: March 21, 2017
    Assignee: The United States of America as Represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: David M. Broadway
  • Publication number: 20160268173
    Abstract: A method and system are provided for determining mechanical stress experienced by a film during fabrication thereof on a substrate positioned in a vacuum deposition chamber. The substrate's first surface is disposed to have the film deposited thereon and the substrate's opposing second surface is a specular reflective surface. A portion of the substrate is supported. An optical displacement sensor is positioned in the vacuum deposition chamber in a spaced-apart relationship with respect to a portion of the substrate's second surface. During film deposition on the substrate's first surface, displacement of the portion of the substrate's second surface is measured using the optical displacement sensor. The measured displacement is indicative of a radius of curvature of the substrate, and the radius of curvature is indicative of mechanical stress being experienced by the film.
    Type: Application
    Filed: March 12, 2015
    Publication date: September 15, 2016
    Inventor: David M. Broadway
  • Patent number: 9163150
    Abstract: A coated article includes a heat treatable (e.g., temperable) antireflection (AR) coating having four layers. The AR coating includes a layer adjacent the glass substrate having an index of refraction substantially matching that of the glass substrate, and having a compressive residual stress. In certain example embodiments, the coating may include the following layers from the glass substrate outwardly: stress-reducing layer/medium index layer/high index layer/low index layer. In certain example embodiments, depending on the chemical and optical properties of the high index layer and the substrate, the stress-reducing layer of the AR coating is selected to cause a net compressive residual stress and thus improve the overall performance of the antireflection coating when the coated article is heat treated.
    Type: Grant
    Filed: January 31, 2014
    Date of Patent: October 20, 2015
    Assignee: Guardian Industries Corp.
    Inventors: David M. Broadway, Alexey Krasnov, Willem Den Boer
  • Publication number: 20140147582
    Abstract: A coated article includes a heat treatable (e.g., temperable) antireflection (AR) coating having four layers. The AR coating includes a layer adjacent the glass substrate having an index of refraction substantially matching that of the glass substrate, and having a compressive residual stress. In certain example embodiments, the coating may include the following layers from the glass substrate outwardly: stress-reducing layer/medium index layer/high index layer/low index layer. In certain example embodiments, depending on the chemical and optical properties of the high index layer and the substrate, the stress-reducing layer of the AR coating is selected to cause a net compressive residual stress and thus improve the overall performance of the antireflection coating when the coated article is heat treated.
    Type: Application
    Filed: January 31, 2014
    Publication date: May 29, 2014
    Applicant: Guardian Industries Corp.
    Inventors: David M. BROADWAY, Alexey KRASNOV, Willem DEN BOER
  • Patent number: 8693097
    Abstract: A coated article includes a temperable antireflection (AR) coating that utilizes medium and low index (index of refraction “n”) layers having compressive residual stress in the AR coating. In certain example embodiments, the coating may include the following layers from the glass substrate outwardly: silicon oxynitride (SiOxNy) medium index layer/high index layer/low index layer. In certain example embodiments, depending on the chemical and optical properties of the high index layer and the substrate, the medium and low index layers of the AR coating are selected to cause a net compressive residual stress and thus optimize the overall performance of the antireflection coating when the coated article is tempered and/or heat-treated.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: April 8, 2014
    Assignee: Guardian Industries Corp.
    Inventors: David M. Broadway, Yiwei Lu, Willem den Boer, Darrell Golden, Paul Patriacca, Gregory Scott
  • Patent number: 8668990
    Abstract: A coated article includes a heat treatable (e.g., temperable) antireflection (AR) coating having four layers. The AR coating includes a layer adjacent the glass substrate having an index of refraction substantially matching that of the glass substrate, and having a compressive residual stress. In certain example embodiments, the coating may include the following layers from the glass substrate outwardly: stress-reducing layer/medium index layer/high index layer/low index layer. In certain example embodiments, depending on the chemical and optical properties of the high index layer and the substrate, the stress-reducing layer of the AR coating is selected to cause a net compressive residual stress and thus improve the overall performance of the antireflection coating when the coated article is heat treated.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: March 11, 2014
    Assignee: Guardian Industries Corp.
    Inventors: David M. Broadway, Alexey Krasnov, Willem Den Boer
  • Patent number: 8445373
    Abstract: Certain example embodiments of this invention relate to a method of activating an indium tin oxide (ITO) thin film deposited, directly or indirectly, on a substrate. The ITO thin film is baked in a low oxygen environment at a temperature of at least 450 degrees C. for at least 10 minutes so as to provide for (1) a post-baked resistivity of the ITO thin film that is below a resistivity of a corresponding air-baked ITO thin film, (2) a post-baked visible spectrum absorption and transmission of the ITO thin film that respectively are below and above the absorption and transmission of the corresponding air-baked ITO thin film, and (3) a post-baked infrared reflectivity of the ITO thin film that is above the reflectivity of the corresponding air-baked ITO thin film. The substrate with the activated ITO thin film may be used in a photovoltaic device, for example.
    Type: Grant
    Filed: May 28, 2009
    Date of Patent: May 21, 2013
    Assignee: Guardian Industries Corp.
    Inventors: David M. Broadway, Yiwei Lu
  • Publication number: 20120200816
    Abstract: Certain example embodiments relate to electronic devices (e.g., LCD or other display devices) having reduced susceptibility to Newton Rings, and/or methods of making the same. In certain example embodiments, the electronic device includes at least first and second glass substrates. An Anti-Newton Ring (ANR)/antireflective (AR) coating is provided on the second and/or third surface of the electronic device (e.g., on an inner surface of the cover glass and/or on an outer surface of the color filter substrate of an LCD device) so as to help reduce the formation of Newton Rings caused by the air pockets that surround one or more points of unintentional glass deformation. This may be made possible in certain example embodiments because the ANR coating is optically matched to reduce reflections of light between the first and second substrates.
    Type: Application
    Filed: February 4, 2011
    Publication date: August 9, 2012
    Applicant: Guardian Industries Corp.
    Inventors: Alexey KRASNOV, Willem den Boer, David M. Broadway
  • Publication number: 20120057236
    Abstract: A coated article includes a temperable antireflection (AR) coating that utilizes medium and low index (index of refraction “n”) layers having compressive residual stress in the AR coating. In certain example embodiments, the coating may include the following layers from the glass substrate outwardly: silicon oxynitride (SiOxNy) medium index layer/high index layer/low index layer. In certain example embodiments, depending on the chemical and optical properties of the high index layer and the substrate, the medium and low index layers of the AR coating are selected to cause a net compressive residual stress and thus optimize the overall performance of the antireflection coating when the coated article is tempered and/or heat-treated.
    Type: Application
    Filed: October 8, 2010
    Publication date: March 8, 2012
    Applicant: Guardian Industries Corp.
    Inventors: David M. Broadway, Yiwei Lu
  • Publication number: 20110157703
    Abstract: A coated article includes a temperable antireflection (AR) coating that utilizes medium and low index (index of refraction “n”) layers having compressive residual stress in the AR coating. In certain example embodiments, the coating may include the following layers from the glass substrate outwardly: silicon oxynitride (SiOxNy) medium index layer/high index layer/low index layer. In certain example embodiments, depending on the chemical and optical properties of the high index layer and the substrate, the medium and low index layers of the AR coating are selected to cause a net compressive residual stress and thus optimize the overall performance of the antireflection coating when the coated article is tempered and/or heat-treated.
    Type: Application
    Filed: September 3, 2010
    Publication date: June 30, 2011
    Applicant: Guardian Industries Corp.
    Inventors: David M. Broadway, Yiwei Lu, Willem den Boer, Darrell Golden, Paul Patriacca, Gregory Scott
  • Publication number: 20100304523
    Abstract: Certain example embodiments of this invention relate to a method of activating an indium tin oxide (ITO) thin film deposited, directly or indirectly, on a substrate. The ITO thin film is baked in a low oxygen environment at a temperature of at least 450 degrees C. for at least 10 minutes so as to provide for (1) a post-baked resistivity of the ITO thin film that is below a resistivity of a corresponding air-baked ITO thin film, (2) a post-baked visible spectrum absorption and transmission of the ITO thin film that respectively are below and above the absorption and transmission of the corresponding air-baked ITO thin film, and (3) a post-baked infrared reflectivity of the ITO thin film that is above the reflectivity of the corresponding air-baked ITO thin film. The substrate with the activated ITO thin film may be used in a photovoltaic device, for example.
    Type: Application
    Filed: May 28, 2009
    Publication date: December 2, 2010
    Applicant: Guardian Industries Corp.
    Inventors: David M. Broadway, Yiwei Lu