Patents by Inventor David M. Filgas

David M. Filgas has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130114627
    Abstract: A laser system comprises a pump diode, fiber, relay optics, and a microchip laser crystal. The pump diode produces light at a first wavelength. The fiber receives the light from the pump diode and produces a round, homogeneous light spot at an output of the fiber. The relay optics receives the light from the fiber. The microchip laser crystal receives the light from the relay optics and produces a linearly polarized single frequency output at a second wavelength. The microchip laser crystal includes a first layer and a second layer. The first layer absorbs the light at the first wavelength and emits light at the second wavelength. The second layer receives the light at the second wavelength and either provides a polarization dependent loss at the second wavelength or maintains a polarization of the light at the second wavelength.
    Type: Application
    Filed: November 7, 2011
    Publication date: May 9, 2013
    Applicant: Raytheon Company
    Inventors: David M. Filgas, N. Peter Davis, Matthew J. Klotz, Victor Leyva, Robert Stultz, Juan Carlos Sotelo
  • Patent number: 8320417
    Abstract: A laser includes a pump source that provides pump energy at a first wavelength and a laser cavity. The laser cavity includes a laser gain medium that receives the pump energy from the pump source and creates gain at a second wavelength different from the first wavelength, and a mode stripping portion coupled to the laser gain medium. The mode stripping portion causes the laser cavity to have a low Fresnel number so as to allow only the lowest-order fiber mode to resonate in the laser cavity. Higher-order fiber modes are discriminated against so as to generate a laser output having a substantially diffraction limited beam in a single transverse mode at the second wavelength.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: November 27, 2012
    Assignee: Raytheon Company
    Inventors: Robert Stultz, David M. Filgas, Michael Ushinsky
  • Publication number: 20120276754
    Abstract: A method and system for locally processing a predetermined microstructure formed on a substrate without causing undesirable changes in electrical or physical characteristics of the substrate or other structures formed on the substrate are provided. The method includes providing information based on a model of laser pulse interactions with the predetermined microstructure, the substrate and the other structures. At least one characteristic of at least one pulse is determined based on the information. A pulsed laser beam is generated including the at least one pulse. The method further includes irradiating the at least one pulse having the at least one determined characteristic into a spot on the predetermined microstructure. The at least one determined characteristic and other characteristics of the at least one pulse are sufficient to locally process the predetermined microstructure without causing the undesirable changes.
    Type: Application
    Filed: July 3, 2012
    Publication date: November 1, 2012
    Applicant: GSI GROUP CORPORATION
    Inventors: James J. Cordingley, Jonathan S. Ehrmann, David M. Filgas, Shepard D. Johnson, Joohan Lee, Donald V. Smart, Donald J. Svetkoff
  • Publication number: 20120195343
    Abstract: A laser includes a pump source that provides pump energy at a first wavelength and a laser cavity. The laser cavity includes a laser gain medium that receives the pump energy from the pump source and creates gain at a second wavelength different from the first wavelength, and a mode stripping portion coupled to the laser gain medium. The mode stripping portion causes the laser cavity to have a low Fresnel number so as to allow only the lowest-order fiber mode to resonate in the laser cavity. Higher-order fiber modes are discriminated against so as to generate a laser output having a substantially diffraction limited beam in a single transverse mode at the second wavelength.
    Type: Application
    Filed: January 31, 2011
    Publication date: August 2, 2012
    Applicant: RAYTHEON COMPANY
    Inventors: Robert D. STULTZ, David M. FILGAS, Michael USHINSKY
  • Patent number: 8217304
    Abstract: A method and system for locally processing a predetermined microstructure formed on a substrate without causing undesirable changes in electrical or physical characteristics of the substrate or other structures formed on the substrate are provided. The method includes providing information based on a model of laser pulse interactions with the predetermined microstructure, the substrate and the other structures. At least one characteristic of at least one pulse is determined based on the information. A pulsed laser beam is generated including the at least one pulse. The method further includes irradiating the at least one pulse having the at least one determined characteristic into a spot on the predetermined microstructure. The at least one determined characteristic and other characteristics of the at least one pulse are sufficient to locally process the predetermined microstructure without causing the undesirable changes.
    Type: Grant
    Filed: March 27, 2002
    Date of Patent: July 10, 2012
    Assignee: GSI Group Corporation
    Inventors: James J. Cordingley, Jonathan S. Ehrmann, David M. Filgas, Shepard D. Johnson, Joohan Lee, Donald V. Smart, Donald J. Svetkoff
  • Publication number: 20120093454
    Abstract: A planar core and a cladding disposed on opposite sides of thereof. In the best mode, the rotator includes a very low Numerical Aperture (NA) planar waveguide. The cladding is birefringent and the refractive index and birefringence thereof are optimized to provide equal mode propagation velocities for both TE and TM modes for at least one transverse mode. The refractive index and birefringence of the cladding are optimized to provide equal mode propagation velocities for both TE and TM modes for a wide range of transverse modes.
    Type: Application
    Filed: October 14, 2010
    Publication date: April 19, 2012
    Inventor: David M. Filgas
  • Publication number: 20110200292
    Abstract: A planar waveguide with a glass core and a crystalline cladding. In a specific embodiment, the core is doped preferably with Neodymium, Ytterbium, or Erbium. In the best mode, the core is athermal glass with a refractive index uniformity 10?6 or better and the crystalline cladding has a refractive index lower than that of the core by 10?4 to 10?3 with a refractive index uniformity of 10?4. The cladding has high transparency at pump and lasing wavelengths. The coefficient of thermal expansion of the cladding is close to that of the core. In illustrative embodiments, the cladding is Sapphire and the core is aluminate glass. In an alternative embodiment, the cladding is crystal quartz and the coreā€”is phosphate glass. By utilizing different materials for the core and cladding, the properties of each are optimized.
    Type: Application
    Filed: February 17, 2010
    Publication date: August 18, 2011
    Inventor: David M. Filgas
  • Patent number: 7955906
    Abstract: A method and system for locally processing a predetermined microstructure formed on a substrate without causing undesirable changes in electrical or physical characteristics of the substrate or other structures formed on the substrate are provided. The method includes providing information based on a model of laser pulse interactions with the predetermined microstructure, the substrate and the other structures. At least one characteristic of at least one pulse is determined based on the information. A pulsed laser beam is generated including the at least one pulse. The method further includes irradiating the at least one pulse having the at least one determined characteristic into a spot on the predetermined microstructure. The at least one determined characteristic and other characteristics of the at least one pulse are sufficient to locally process the predetermined microstructure without causing the undesirable changes.
    Type: Grant
    Filed: July 1, 2008
    Date of Patent: June 7, 2011
    Assignee: GSI Group Corporation
    Inventors: James J. Cordingley, Jonathan S. Ehrman, David M. Filgas, Shepard D. Johnson, Joohan Lee, Donald V. Smart, Donald J. Svetkoff
  • Patent number: 7955905
    Abstract: A method and system for locally processing a predetermined microstructure formed on a substrate without causing undesirable changes in electrical or physical characteristics of the substrate or other structures formed on the substrate are provided. The method includes providing information based on a model of laser pulse interactions with the predetermined microstructure, the substrate and the other structures. At least one characteristic of at least one pulse is determined based on the information. A pulsed laser beam is generated including the at least one pulse. The method further includes irradiating the at least one pulse having the at least one determined characteristic into a spot on the predetermined microstructure. The at least one determined characteristic and other characteristics of the at least one pulse are sufficient to locally process the predetermined microstructure without causing the undesirable changes.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: June 7, 2011
    Assignee: GSI Group Corporation
    Inventors: James J. Cordingley, Jonathan S. Ehrmann, David M. Filgas, Shepard D. Johnson, Joohan Lee, Donald V. Smart, Donald J. Svetkoff
  • Publication number: 20100232007
    Abstract: A system and method for providing a wavefront corrected high-energy beam of electromagnetic energy. In the illustrative embodiment, the system includes a source of a first beam of electromagnetic energy; an amplifier for amplifying said beam to provide a second beam; a sensor for sensing aberration in said second beam and providing an error signal in response thereto; a processor for processing said error signal and providing a correction signal in response thereto; and a spatial light modulator responsive to said correction signal for adjusting said beam to facilitate a correction of said aberration thereof. In more specific embodiments, the source is a laser and the sensor is a laser wavefront sensor. A mirror is disposed between said modulator and said sensor for sampling said beam. The mirror has an optical thin-film dielectric coating on at least one optical surface thereof. The coating is effective to sample said beam and transmit a low power sample thereof to said means for sensing aberration.
    Type: Application
    Filed: January 24, 2007
    Publication date: September 16, 2010
    Inventors: Robert W. Byren, William B. King, David M. Filgas
  • Publication number: 20080284837
    Abstract: A method and system for locally processing a predetermined microstructure formed on a substrate without causing undesirable changes in electrical or physical characteristics of the substrate or other structures formed on the substrate are provided. The method includes providing information based on a model of laser pulse interactions with the predetermined microstructure, the substrate and the other structures. At least one characteristic of at least one pulse is determined based on the information. A pulsed laser beam is generated including the at least one pulse. The method further includes irradiating the at least one pulse having the at least one determined characteristic into a spot on the predetermined microstructure. The at least one determined characteristic and other characteristics of the at least one pulse are sufficient to locally process the predetermined microstructure without causing the undesirable changes.
    Type: Application
    Filed: July 1, 2008
    Publication date: November 20, 2008
    Applicant: GSI Group Corporation
    Inventors: James J. Cordingley, Jonathan S. Ehrmann, David M. Filgas, Shepard D. Johnson, Joohan Lee, Donald V. Smart, Donald J. Svetkoff
  • Patent number: 7382389
    Abstract: A method and system for locally processing a predetermined microstructure formed on a substrate without causing undesirable changes in electrical or physical characteristics of the substrate or other structures formed on the substrate are provided. The method includes providing information based on a model of laser pulse interactions with the predetermined microstructure, the substrate and the other structures. At least one characteristic of at least one pulse is determined based on the information. A pulsed laser beam is generated including the at least one pulse. The method further includes irradiating the at least one pulse having the at least one determined characteristic into a spot on the predetermined microstructure. The at least one determined characteristic and other characteristics of the at least one pulse are sufficient to locally process the predetermined microstructure without causing the undesirable changes.
    Type: Grant
    Filed: November 7, 2006
    Date of Patent: June 3, 2008
    Assignee: GSI Lumonics Corporation
    Inventors: James J. Cordingley, Jonathan S. Ehrmann, David M. Filgas, Shepard D. Johnson, Joohan Lee, Donald V. Smart, Donald J. Svetkoff
  • Patent number: 7376160
    Abstract: A laser resonator for generating a laser beam having beam quality along two transverse axes that is determined primarily by the mode discrimination characteristics of one axis. The apparatus including a means for providing a collimated beam of electromagnetic energy with a predetermined orientation with respect to a line of sight thereof, and, a means for rotating the beam such that a transverse mode selection therefor is the same for two orthogonal directions thereof.
    Type: Grant
    Filed: November 24, 2003
    Date of Patent: May 20, 2008
    Assignee: Raytheon Company
    Inventors: Robin A. Reeder, David M. Filgas, Robert W. Byren
  • Patent number: 7324571
    Abstract: Laser processing methods, systems and apparatus having a super-modulating power supply or pumping subsystem and high beam quality (i.e., brightness) are disclosed. The methods, systems and apparatus have significant benefits, improved operation characteristics and material processing capability over currently available methods, systems and apparatus. In at least one embodiment, the beam quality of a high power solid state laser is improved in the presence of thermal lensing. High power laser cutting, scribing, and welding results are improved with a combination of modulation and high beam quality while providing for improved processing speeds.
    Type: Grant
    Filed: May 25, 2006
    Date of Patent: January 29, 2008
    Assignee: GSI Group Ltd.
    Inventors: Gerald Francis Hermann, Thomas Robert Kugler, Mohammed Naeem, Keith Withnall, Walther Goethals, David M. Filgas
  • Patent number: 7065121
    Abstract: Methods and systems for laser-based processing of materials are disclosed wherein a scalable laser architecture, based on planar waveguide technology, provides for pulsed laser micromachining applications while supporting higher average power applications like laser welding and cutting. Various embodiments relate to improvements in planar waveguide technology which provide for stable operation at high powers with a reduction in spurious outputs and thermal effects. At least one embodiment provides for micromachining with pulsewidths in the range of femtoseconds to nanoseconds. In another embodiment, 100 W or greater average output power operation is provided for with a diode-pumped, planar waveguide architecture.
    Type: Grant
    Filed: November 13, 2002
    Date of Patent: June 20, 2006
    Assignee: GSI Group Ltd.
    Inventors: David M. Filgas, Frank Haran, Andreas Mank, John Robertson
  • Patent number: 7054341
    Abstract: Laser processing methods, systems and apparatus having a super-modulating power supply (6) or pumping subsystem (5) and high beam quality (i.e., brightness) are disclosed. The methods, systems and apparatus have significant benefits, improved operation characteristics and material processing capability over currently available methods, systems and apparatus. In at least one embodiment, the beam quality of a high power solid state laser (2) is improved in the presence of thermal lensing. High power laser cutting, scribing, and welding results are improved with a combination of modulation and high beam quality while providing for improved processing speeds.
    Type: Grant
    Filed: February 19, 2003
    Date of Patent: May 30, 2006
    Assignee: GSI Group Ltd.
    Inventors: Gerald Francis Hermann, Thomas Robert Kugler, Mohammed Naeem, Keith Withnall, Walther Goethals, David M. Filgas
  • Patent number: 6785304
    Abstract: A waveguide device in the form of either a solid-state laser or amplifier is divided into separate pumping and output mode control sections along at least one direction of the device by leaving a portion of a core of the device unclad or by depositing appropriate coatings on different sections of the core or by contacting/bonding materials with different refractive indices to different sections of the core or by a combination of these approaches. The core has a pump input surface for receiving pumping radiation at a pumping wavelength and one or more output surfaces for emitting a laser beam at an output wavelength. When used as an amplifier, the core also has a laser input surface which may be the same as one of the output surfaces.
    Type: Grant
    Filed: July 24, 2001
    Date of Patent: August 31, 2004
    Assignee: GSI Lumonics, Inc.
    Inventor: David M. Filgas
  • Patent number: 6738396
    Abstract: Methods and systems for laser-based processing of materials are disclosed wherein a scalable laser architecture, based on planar waveguide technology, provides for pulsed laser micromachining applications while supporting higher average power applications like laser welding and cutting. Various embodiments relate to improvements in planar waveguide technology which provide for stable operation at high powers with a reduction in spurious outputs and thermal effects. At least one embodiment provides for micromachining with pulsewidths in the range of femtoseconds to nanoseconds. In another embodiment, 100W or greater average output power operation is provided for with a diode-pumped, planar waveguide architecture.
    Type: Grant
    Filed: November 13, 2002
    Date of Patent: May 18, 2004
    Assignee: GSI Lumonics Ltd.
    Inventors: David M. Filgas, Frank Haran, Andreas Mank, John Robertson
  • Publication number: 20030161375
    Abstract: Methods and systems for laser-based processing of materials are disclosed wherein a scalable laser architecture, based on planar waveguide technology, provides for pulsed laser micromachining applications while supporting higher average power applications like laser welding and cutting. Various embodiments relate to improvements in planar waveguide technology which provide for stable operation at high powers with a reduction in spurious outputs and thermal effects. At least one embodiment provides for micromachining with pulsewidths in the range of femtoseconds to nanoseconds. In another embodiment, 100W or greater average output power operation is provided for with a diode-pumped, planar waveguide architecture.
    Type: Application
    Filed: November 13, 2002
    Publication date: August 28, 2003
    Inventors: David M. Filgas, Frank Haran, Andreas Mank, John Robertson
  • Publication number: 20030160034
    Abstract: Methods and systems for laser-based processing of materials are disclosed wherein a scalable laser architecture, based on planar waveguide technology, provides for pulsed laser micromachining applications while supporting higher average power applications like laser welding and cutting. Various embodiments relate to improvements in planar waveguide technology which provide for stable operation at high powers with a reduction in spurious outputs and thermal effects. At least one embodiment provides for micromachining with pulsewidths in the range of femtoseconds to nanoseconds. In another embodiment, 100W or greater average output power operation is provided for with a diode-pumped, planar waveguide architecture.
    Type: Application
    Filed: November 13, 2002
    Publication date: August 28, 2003
    Inventors: David M. Filgas, Frank Haran, Andreas Mank, John Robertson