Patents by Inventor David M. Kurtz

David M. Kurtz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11965215
    Abstract: Processes and materials to detect cancer from a biopsy are described. In some cases, cell-free nucleic acids can be sequenced, and the sequencing result can be utilized to detect sequences derived from a neoplasm. Detection of somatic variants occurring in phase can indicate the presence of cancer in a diagnostic scan and a clinical intervention can be performed.
    Type: Grant
    Filed: February 10, 2023
    Date of Patent: April 23, 2024
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: David M. Kurtz, Maximilian Diehn, Arash Ash Alizadeh
  • Publication number: 20240105281
    Abstract: Processes and materials to detect cancer, transplant rejection, or fetal genetic abnormalities from a biopsy are described. In some cases, nucleic acid molecules, such as cell-free nucleic acids, can be sequenced, and the sequencing result can be utilized to detect sequences indicative of a neoplasm, transplant rejection, or fetal genetic abnormality. Detection of somatic variants occurring in phase and/or insertions and deletions (indels) can indicate the presence of cancer, transplant rejection, or fetal genetic abnormalities in a diagnostic scan, and a clinical intervention can be performed.
    Type: Application
    Filed: August 18, 2023
    Publication date: March 28, 2024
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Jacob J. Chabon, David M. Kurtz, Maximilian Diehn, Arash Ash Alizadeh
  • Publication number: 20240035095
    Abstract: Processes and materials to detect cancer from a biopsy are described. In some cases, cell-free nucleic acids can be sequenced, and the sequencing result can be utilized to detect sequences derived from a neoplasm. Detection of somatic variants occurring in phase can indicate the presence of cancer in a diagnostic scan and a clinical intervention can be performed.
    Type: Application
    Filed: October 4, 2023
    Publication date: February 1, 2024
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: David M. Kurtz, Maximilian Diehn, Arash Ash Alizadeh
  • Publication number: 20240026460
    Abstract: Processes and materials to detect cancer from a biopsy are described. In some cases, cell-free nucleic acids can be sequenced, and the sequencing result can be utilized to detect sequences derived from a neoplasm. Detection of somatic variants occurring in phase can indicate the presence of cancer in a diagnostic scan and a clinical intervention can be performed.
    Type: Application
    Filed: February 10, 2023
    Publication date: January 25, 2024
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: David M. Kurtz, Maximilian Diehn, Arash Ash Alizadeh
  • Patent number: 11851716
    Abstract: Processes and materials to detect cancer from a biopsy are described. In some cases, cell-free nucleic acids can be sequenced, and the sequencing result can be utilized to detect sequences derived from a neoplasm. Detection of somatic variants occurring in phase can indicate the presence of cancer in a diagnostic scan and a clinical intervention can be performed.
    Type: Grant
    Filed: November 17, 2022
    Date of Patent: December 26, 2023
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: David M. Kurtz, Maximilian Diehn, Arash Ash Alizadeh
  • Publication number: 20230383361
    Abstract: The present disclosure generally relates to methods that utilize cell-free DNA from a liquid biopsy of an individual to track DNA from both the tumor and the chimeric antigen receptor (CAR) T-cells. The present disclosure further relates to methods of predicting individuals' response to therapy, e.g., CAR T-cell therapies. Additionally, the present disclosure relates to methods of treating individuals with cancer, such as lymphoma.
    Type: Application
    Filed: October 12, 2021
    Publication date: November 30, 2023
    Inventors: David M. KURTZ, Brian SWORDER, Arash Ash ALIZADEH, Maximilian DIEHN, Matthew FRANK, David B. MIKLOS, Crystal MACKALL
  • Patent number: 11783912
    Abstract: Processes and materials to detect cancer, transplant rejection, or fetal genetic abnormalities from a biopsy are described. In some cases, nucleic acid molecules, such as cell-free nucleic acids, can be sequenced, and the sequencing result can be utilized to detect sequences indicative of a neoplasm, transplant rejection, or fetal genetic abnormality. Detection of somatic variants occurring in phase and/or insertions and deletions (indels) can indicate the presence of cancer, transplant rejection, or fetal genetic abnormalities in a diagnostic scan, and a clinical intervention can be performed.
    Type: Grant
    Filed: April 27, 2022
    Date of Patent: October 10, 2023
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Jacob J. Chabon, David M. Kurtz, Maximilian Diehn, Arash Ash Alizadeh
  • Publication number: 20230250485
    Abstract: Processes and materials to detect cancer from a biopsy are described. In some cases, cell-free nucleic acids can be sequenced, and the sequencing result can be utilized to detect sequences derived from a neoplasm. Detection of somatic variants occurring in phase can indicate the presence of cancer in a diagnostic scan and a clinical intervention can be performed.
    Type: Application
    Filed: February 10, 2023
    Publication date: August 10, 2023
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: David M. Kurtz, Maximilian Diehn, Arash Ash Alizadeh
  • Publication number: 20230242980
    Abstract: Processes and materials to protect nucleic acid molecules are described. Processes and materials to detect neoplasms from a biopsy are described. Processes and materials to build a sequencing library are described. Cell-free nucleic acids can be sequenced and the sequencing result can be utilized to detect sequences derived from a neoplasm.
    Type: Application
    Filed: August 24, 2022
    Publication date: August 3, 2023
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Maximilian Diehn, Arash Ash Alizadeh, Jacob J. Chabon, David M. Kurtz
  • Publication number: 20230203597
    Abstract: Processes and materials to detect cancer from a biopsy are described. In some cases, cell-free nucleic acids can be sequenced, and the sequencing result can be utilized to detect sequences derived from a neoplasm. Detection of somatic variants occurring in phase can indicate the presence of cancer in a diagnostic scan and a clinical intervention can be performed.
    Type: Application
    Filed: November 17, 2022
    Publication date: June 29, 2023
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: David M. Kurtz, Maximilian Diehn, Arash Ash Alizadeh
  • Publication number: 20230183816
    Abstract: Processes and materials to detect cancer from a biopsy are described. In some cases, cell-free nucleic acids can be sequenced, and the sequencing result can be utilized to detect sequences derived from a neoplasm. Detection of somatic variants occurring in phase can indicate the presence of cancer in a diagnostic scan and a clinical intervention can be performed.
    Type: Application
    Filed: February 22, 2023
    Publication date: June 15, 2023
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: David M. Kurtz, Maximilian Diehn, Arash Ash Alizadeh
  • Patent number: 11634779
    Abstract: Processes and materials to detect cancer from a biopsy are described. In some cases, cell-free nucleic acids can be sequenced, and the sequencing result can be utilized to detect sequences derived from a neoplasm. Detection of somatic variants occurring in phase can indicate the presence of cancer in a diagnostic scan and a clinical intervention can be performed.
    Type: Grant
    Filed: May 2, 2022
    Date of Patent: April 25, 2023
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: David M. Kurtz, Maximilian Diehn, Arash Ash Alizadeh
  • Publication number: 20230124070
    Abstract: Processes and materials to detect cancer from a biopsy are described. In some cases, cell-free nucleic acids can be sequenced, and the sequencing result can be utilized to detect sequences derived from a neoplasm. Detection of somatic variants occurring in phase can indicate the presence of cancer in a diagnostic scan and a clinical intervention can be performed.
    Type: Application
    Filed: November 17, 2022
    Publication date: April 20, 2023
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: David M. Kurtz, Maximilian Diehn, Arash Ash Alizadeh
  • Patent number: 11613787
    Abstract: Processes and materials to detect cancer from a biopsy are described. In some cases, cell-free nucleic acids can be sequenced, and the sequencing result can be utilized to detect sequences derived from a neoplasm. Detection of somatic variants occurring in phase can indicate the presence of cancer in a diagnostic scan and a clinical intervention can be performed.
    Type: Grant
    Filed: December 29, 2021
    Date of Patent: March 28, 2023
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: David M. Kurtz, Maximilian Diehn, Arash Ash Alizadeh
  • Publication number: 20220389518
    Abstract: Processes and materials to detect cancer from a biopsy are described. In some cases, cell-free nucleic acids can be sequenced, and the sequencing result can be utilized to detect sequences derived from a neoplasm. Detection of somatic variants occurring in phase can indicate the presence of cancer in a diagnostic scan and a clinical intervention can be performed.
    Type: Application
    Filed: August 16, 2022
    Publication date: December 8, 2022
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: David M. Kurtz, Maximilian Diehn, Arash Ash Alizadeh
  • Publication number: 20220392605
    Abstract: Methods of treatment based on a prognosis as determined utilizing a Bayesian framework are provided. Clinical data is utilized within a Bayesian framework to obtain a prognosis of a medical disorder. A prognosis can be updated utilizing a Bayesian framework when subsequent clinical data is acquired, such as clinical data acquired during a treatment or clinical monitoring.
    Type: Application
    Filed: December 30, 2021
    Publication date: December 8, 2022
    Applicant: The Board of Trustes of the Leland Stanford Junior University
    Inventors: David M. Kurtz, Arash Ash Alizadeh, Maximilian Diehn, Mohammad Shahrokh Esfahani
  • Publication number: 20220375540
    Abstract: Processes and materials to detect cancer, transplant rejection, or fetal genetic abnormalities from a biopsy are described. In some cases, nucleic acid molecules, such as cell-free nucleic acids, can be sequenced, and the sequencing result can be utilized to detect sequences indicative of a neoplasm, transplant rejection, or fetal genetic abnormality. Detection of somatic variants occurring in phase and/or insertions and deletions (indels) can indicate the presence of cancer, transplant rejection, or fetal genetic abnormalities in a diagnostic scan, and a clinical intervention can be performed.
    Type: Application
    Filed: April 27, 2022
    Publication date: November 24, 2022
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Jacob J. Chabon, David M. Kurtz, Maximilian Diehn, Arash Ash Alizadeh
  • Publication number: 20220340980
    Abstract: Processes and materials to detect cancer from a biopsy are described. In some cases, cell-free nucleic acids can be sequenced, and the sequencing result can be utilized to detect sequences derived from a neoplasm. Detection of somatic variants occurring in phase can indicate the presence of cancer in a diagnostic scan and a clinical intervention can be performed.
    Type: Application
    Filed: May 2, 2022
    Publication date: October 27, 2022
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: David M. Kurtz, Maximilian Diehn, Arash Ash Alizadeh
  • Patent number: 11447833
    Abstract: Processes and materials to detect cancer from a biopsy are described. In some cases, cell-free nucleic acids can be sequenced, and the sequencing result can be utilized to detect sequences derived from a neoplasm. Detection of somatic variants occurring in phase can indicate the presence of cancer in a diagnostic scan and a clinical intervention can be performed.
    Type: Grant
    Filed: November 16, 2021
    Date of Patent: September 20, 2022
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: David M. Kurtz, Maximilian Diehn, Arash Ash Alizadeh
  • Publication number: 20220251664
    Abstract: Processes and materials to detect cancer from a biopsy are described. In some cases, cell-free nucleic acids can be sequenced, and the sequencing result can be utilized to detect sequences derived from a neoplasm. Detection of somatic variants occurring in phase can indicate the presence of cancer in a diagnostic scan and a clinical intervention can be performed.
    Type: Application
    Filed: December 29, 2021
    Publication date: August 11, 2022
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: David M. Kurtz, Maximilian Diehn, Arash Ash Alizadeh