Patents by Inventor David M. Pietruszynski

David M. Pietruszynski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7141883
    Abstract: An electromagnetically-shielded high-Q inductor may be fabricated within a multi-layer package substrate (MLS). The inductor is preferably constructed as a loop structure on a layer of the MLS, and a shielding structure is formed around the inductor to substantially enclose the inductor in a Faraday cage-like enclosure. The shielding structure includes a top plate formed above the inductor on another layer of the MLS, and a bottom plate formed on yet another layer of the MLS or on a layer of an integrated circuit die which is below and attached to the MLS, preferably using solder bumps. Shielding structure sidewalls may be formed by a ring of stacked vias or via channels. The inductor is preferably connected to stacked vias which provide a connection to the underlying integrated circuit die by way of additional solder bumps and cut-outs through the bottom plate of the shielding structure.
    Type: Grant
    Filed: June 18, 2003
    Date of Patent: November 28, 2006
    Assignee: Silicon Laboratories Inc.
    Inventors: Derrick C. Wei, Ying Shi, Kevin G. Smith, Steven P. Proffitt, Axel Thomsen, David M. Pietruszynski, Ligang Zhang
  • Publication number: 20040222506
    Abstract: An electromagnetically-shielded high-Q inductor may be fabricated within a multi-layer package substrate (MLS). The inductor is preferably constructed as a loop structure on a layer of the MLS, and a shielding structure is formed around the inductor to substantially enclose the inductor in a Faraday cage-like enclosure. The shielding structure includes a top plate formed above the inductor on another layer of the MLS, and a bottom plate formed on yet another layer of the MLS or on a layer of an integrated circuit die which is below and attached to the MLS, preferably using solder bumps. Shielding structure sidewalls may be formed by a ring of stacked vias or via channels. The inductor is preferably connected to stacked vias which provide a connection to the underlying integrated circuit die by way of additional solder bumps and cut-outs through the bottom plate of the shielding structure.
    Type: Application
    Filed: June 18, 2003
    Publication date: November 11, 2004
    Applicant: Silicon Laboratories, Inc.
    Inventors: Derrick C. Wei, Ying Shi, Kevin G. Smith, Steven P. Proffitt, Axel Thomsen, David M. Pietruszynski
  • Patent number: 6747522
    Abstract: A method of tuning a DCXO includes the step of providing a coarse tuning array and a fine tuning array of capacitors fabricated on the same integrated circuit die. The coarse array is adjusted until the difference between a desired frequency and the output frequency corresponds to a change in capacitance no greater than half the range of the fine tuning array. In one embodiment, the fine tuning array is adjusted to mid-range before adjusting the coarse tuning array. A DCXO apparatus includes at least one integrated circuit segmented switched capacitor network providing a capacitance that is a nonmonotonic function of a composite input code. The segmented switched capacitor network includes parallel coupled binary weighted and thermometer coded switched capacitor networks for coarse and fine tuning, respectively.
    Type: Grant
    Filed: May 3, 2002
    Date of Patent: June 8, 2004
    Assignee: Silicon Laboratories, Inc.
    Inventors: David M. Pietruszynski, Douglas R. Frey
  • Publication number: 20030206070
    Abstract: A method of tuning a DCXO includes the step of providing a coarse tuning array and a fine tuning array of capacitors fabricated on the same integrated circuit die. The coarse array is adjusted until the difference between a desired frequency and the output frequency corresponds to a change in capacitance no greater than half the range of the fine tuning array. In one embodiment, the fine tuning array is adjusted to mid-range before adjusting the coarse tuning array. A DCXO apparatus includes at least one integrated circuit segmented switched capacitor network providing a capacitance that is a nonmonotonic function of a composite input code. The segmented switched capacitor network includes parallel coupled binary weighted and thermometer coded switched capacitor networks for coarse and fine tuning, respectively.
    Type: Application
    Filed: May 3, 2002
    Publication date: November 6, 2003
    Inventors: David M. Pietruszynski, Douglas R. Frey
  • Patent number: 6141169
    Abstract: A system and method for an amplifier control circuit is provided which does not require the use of a large off-chip or on-chip capacitor for achieving a low frequency coupling corner, while still effectively allowing AC coupling the data detection circuit. In addition, the input offset voltage to the amplifier may be compensated and the inherent random low frequency input voltages provided to the amplifier may be controlled or canceled. Further, the amplifier control circuitry includes a freeze capability which allows the control circuitry to halt all updates to the input offset/low frequency control circuit when the voltage input signal is interrupted. In addition low frequency control and offset compensation updates may be performed without causing large output signal glitches so that the integrity of the received signal will not be compromised. In a preferred embodiment the system and method may be utilized for data detection circuits utilized in conjunction with optical disks.
    Type: Grant
    Filed: October 23, 1997
    Date of Patent: October 31, 2000
    Assignee: Cirrus Logic, Inc.
    Inventors: David M. Pietruszynski, Jerrell P. Hein, William G. Bliss, German S. Feyh
  • Patent number: 6069866
    Abstract: A system and method for a data detection circuit is provided in which separate coarse gain amplifiers and fine gain amplifiers are utilized. The coarse gain amplifiers may include drain switching of transistors in order to modify the amplifier gain. More particularly, drain switching may be utilized to selectively switch in and out different differential input transistor pairs and/or different current sources. In this manner the gain of the amplifier may be adjusted to one of a variety of different coarse gain control levels. The coarse gain control provided allows for gain adjustments without significantly decreasing the bandwidth of the amplifier. In a preferred embodiment the system and method may be utilized for data detection circuits utilized in conjunction with optical disks.
    Type: Grant
    Filed: October 23, 1997
    Date of Patent: May 30, 2000
    Assignee: Cirrus Logic, Inc.
    Inventors: David M. Pietruszynski, Ion Constantin Tesu
  • Patent number: 5909150
    Abstract: A system and method for regulating the voltage at an input node of a varying current demand circuit is provided. The input node may be a power supply node and the varying current demand circuit may be a controllable oscillator. In addition, a frequency synthesizer may be formed from a phase locked loop which includes the controllable oscillator and a voltage control circuit. The voltage control circuit may receive an input control signal that varies as the current demand of the controllable oscillator varies. In response to the input control signal, the voltage control circuit may provide a more stable voltage supply to the controllable oscillator even as the current demands of the oscillator vary widely. The input control signal may be generated by generating a signal from the loop path of the phase locked loop. The frequency synthesizer may be utilized in a data storage system data detection circuit, such as for example, a data detection circuit used for recovering data from an optical disk.
    Type: Grant
    Filed: October 23, 1997
    Date of Patent: June 1, 1999
    Assignee: Cirrus Logic, Inc.
    Inventors: Matthew M. Kostelnik, David M. Pietruszynski