Patents by Inventor David M. Solum

David M. Solum has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240275805
    Abstract: Embodiments presented herein describe techniques for generating a linguistic model of input data obtained from a data source (e.g., a video camera). According to one embodiment of the present disclosure, a sequence of symbols is generated based on an ordered stream of normalized vectors generated from the input data. A dictionary of words is generated from combinations of the ordered sequence of symbols based on a frequency at which combinations of symbols appear in the ordered sequence of symbols. A plurality of phrases is generated based an ordered sequence of words from the dictionary observed in the ordered sequence of symbols based on a frequency by which combinations of words in ordered sequence of words appear relative to one another.
    Type: Application
    Filed: April 22, 2024
    Publication date: August 15, 2024
    Applicant: Intellective Ai, Inc.
    Inventors: Ming-Jung SEOW, Wesley Kenneth COBB, Gang XU, Tao YANG, Aaron POFFENBERGER, Lon W. RISINGER, Kishor Adinath SAITWAL, Michael S. YANTOSCA, David M. SOLUM, Alex David HEMSATH, Dennis G. URECH, Duy Trong NGUYEN, Charles Richard MORGAN
  • Patent number: 11991194
    Abstract: Embodiments presented herein describe techniques for generating a linguistic model of input data obtained from a data source (e.g., a video camera). According to one embodiment of the present disclosure, a sequence of symbols is generated based on an ordered stream of normalized vectors generated from the input data. A dictionary of words is generated from combinations of the ordered sequence of symbols based on a frequency at which combinations of symbols appear in the ordered sequence of symbols. A plurality of phrases is generated based an ordered sequence of words from the dictionary observed in the ordered sequence of symbols based on a frequency by which combinations of words in ordered sequence of words appear relative to one another.
    Type: Grant
    Filed: July 6, 2021
    Date of Patent: May 21, 2024
    Assignee: Intellective Ai, Inc.
    Inventors: Ming-Jung Seow, Wesley Kenneth Cobb, Gang Xu, Tao Yang, Aaron Poffenberger, Lon W. Risinger, Kishor Adinath Saitwal, Michael S. Yantosca, David M. Solum, Alex David Hemsath, Dennis G. Urech, Duy Trong Nguyen, Charles Richard Morgan
  • Publication number: 20220006825
    Abstract: Embodiments presented herein describe techniques for generating a linguistic model of input data obtained from a data source (e.g., a video camera). According to one embodiment of the present disclosure, a sequence of symbols is generated based on an ordered stream of normalized vectors generated from the input data. A dictionary of words is generated from combinations of the ordered sequence of symbols based on a frequency at which combinations of symbols appear in the ordered sequence of symbols. A plurality of phrases is generated based an ordered sequence of words from the dictionary observed in the ordered sequence of symbols based on a frequency by which combinations of words in ordered sequence of words appear relative to one another.
    Type: Application
    Filed: July 6, 2021
    Publication date: January 6, 2022
    Applicant: Intellective Ai, Inc.
    Inventors: Ming-Jung SEOW, Wesley Kenneth COBB, Gang XU, Tao YANG, Aaron POFFENBERGER, Lon W. RISINGER, Kishor Adinath SAITWAL, Michael S. YANTOSCA, David M. SOLUM, Alex David HEMSATH, Dennis G. URECH, Duy Trong NGUYEN, Charles Richard MORGAN
  • Patent number: 10706284
    Abstract: A machine-learning engine is disclosed that is configured to recognize and learn behaviors, as well as to identify and distinguish between normal and abnormal behavior within a scene, by analyzing movements and/or activities (or absence of such) over time. The machine-learning engine may be configured to evaluate a sequence of primitive events and associated kinematic data generated for an object depicted in a sequence of video frames and a related vector representation. The vector representation is generated from a primitive event symbol stream and a phase space symbol stream, and the streams describe actions of the objects depicted in the sequence of video frames.
    Type: Grant
    Filed: August 20, 2019
    Date of Patent: July 7, 2020
    Assignee: AVIGILON PATENT HOLDING 1 CORPORATION
    Inventors: John Eric Eaton, Wesley Kenneth Cobb, Dennis G. Urech, David S. Friedlander, Gang Xu, Ming-Jung Seow, Lon W. Risinger, David M. Solum, Tao Yang, Rajkiran K. Gottumukkal, Kishor Adinath Saitwal
  • Publication number: 20190377951
    Abstract: A machine-learning engine is disclosed that is configured to recognize and learn behaviors, as well as to identify and distinguish between normal and abnormal behavior within a scene, by analyzing movements and/or activities (or absence of such) over time. The machine-learning engine may be configured to evaluate a sequence of primitive events and associated kinematic data generated for an object depicted in a sequence of video frames and a related vector representation. The vector representation is generated from a primitive event symbol stream and a phase space symbol stream, and the streams describe actions of the objects depicted in the sequence of video frames.
    Type: Application
    Filed: August 20, 2019
    Publication date: December 12, 2019
    Inventors: John Eric EATON, Wesley Kenneth COBB, Dennis G. URECH, David S. FRIEDLANDER, Gang XU, Ming-Jung SEOW, Lon W. RISINGER, David M. SOLUM, Tao YANG, Rajkiran K. GOTTUMUKKAL, Kishor Adinath SAITWAL
  • Patent number: 10423835
    Abstract: A machine-learning engine is disclosed that is configured to recognize and learn behaviors, as well as to identify and distinguish between normal and abnormal behavior within a scene, by analyzing movements and/or activities (or absence of such) over time. The machine-learning engine may be configured to evaluate a sequence of primitive events and associated kinematic data generated for an object depicted in a sequence of video frames and a related vector representation. The vector representation is generated from a primitive event symbol stream and a phase space symbol stream, and the streams describe actions of the objects depicted in the sequence of video frames.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: September 24, 2019
    Assignee: AVIGILON PATENT HOLDING 1 CORPORATION
    Inventors: John Eric Eaton, Wesley Kenneth Cobb, Dennis G. Urech, David S. Friedlander, Gang Xu, Ming-Jung Seow, Lon W. Risinger, David M. Solum, Tao Yang, Rajkiran K. Gottumukkal, Kishor Adinath Saitwal
  • Publication number: 20190230108
    Abstract: Embodiments presented herein describe techniques for generating a linguistic model of input data obtained from a data source (e.g., a video camera). According to one embodiment of the present disclosure, a sequence of symbols is generated based on an ordered stream of normalized vectors generated from the input data. A dictionary of words is generated from combinations of the ordered sequence of symbols based on a frequency at which combinations of symbols appear in the ordered sequence of symbols. A plurality of phrases is generated based an ordered sequence of words from the dictionary observed in the ordered sequence of symbols based on a frequency by which combinations of words in ordered sequence of words appear relative to one another.
    Type: Application
    Filed: December 11, 2018
    Publication date: July 25, 2019
    Applicant: Omni AI, Inc.
    Inventors: Ming-Jung SEOW, Wesley Kenneth COBB, Gang XU, Tao YANG, Aaron POFFENBERGER, Lon W. RISINGER, Kishor Adinath SAITWAL, Michael S. YANTOSCA, David M. SOLUM, Alex David HEMSATH, Dennis G. URECH, Duy Trong NGUYEN, Charles Richard MORGAN
  • Publication number: 20190122048
    Abstract: A machine-learning engine is disclosed that is configured to recognize and learn behaviors, as well as to identify and distinguish between normal and abnormal behavior within a scene, by analyzing movements and/or activities (or absence of such) over time. The machine-learning engine may be configured to evaluate a sequence of primitive events and associated kinematic data generated for an object depicted in a sequence of video frames and a related vector representation. The vector representation is generated from a primitive event symbol stream and a phase space symbol stream, and the streams describe actions of the objects depicted in the sequence of video frames.
    Type: Application
    Filed: December 19, 2018
    Publication date: April 25, 2019
    Inventors: John Eric EATON, Wesley Kenneth COBB, Dennis G. URECH, David S. FRIEDLANDER, Gang XU, Ming-Jung SEOW, Lon W. RISINGER, David M. SOLUM, Tao YANG, Rajkiran K. GOTTUMUKKAL, Kishor Adinath SAITWAL
  • Patent number: 10198636
    Abstract: A machine-learning engine is disclosed that is configured to recognize and learn behaviors, as well as to identify and distinguish between normal and abnormal behavior within a scene, by analyzing movements and/or activities (or absence of such) over time. The machine-learning engine may be configured to evaluate a sequence of primitive events and associated kinematic data generated for an object depicted in a sequence of video frames and a related vector representation. The vector representation is generated from a primitive event symbol stream and a phase space symbol stream, and the streams describe actions of the objects depicted in the sequence of video frames.
    Type: Grant
    Filed: March 14, 2018
    Date of Patent: February 5, 2019
    Assignee: AVIGILON PATENT HOLDING 1 CORPORATION
    Inventors: John Eric Eaton, Wesley Kenneth Cobb, Dennis G. Urech, David S. Friedlander, Gang Xu, Ming-Jung Seow, Lon W. Risinger, David M. Solum, Tao Yang, Rajkiran K. Gottumukkal, Kishor Adinath Saitwal
  • Patent number: 10187415
    Abstract: Embodiments presented herein describe techniques for generating a linguistic model of input data obtained from a data source (e.g., a video camera). According to one embodiment of the present disclosure, a sequence of symbols is generated based on an ordered stream of normalized vectors generated from the input data. A dictionary of words is generated from combinations of the ordered sequence of symbols based on a frequency at which combinations of symbols appear in the ordered sequence of symbols. A plurality of phrases is generated based an ordered sequence of words from the dictionary observed in the ordered sequence of symbols based on a frequency by which combinations of words in ordered sequence of words appear relative to one another.
    Type: Grant
    Filed: March 26, 2017
    Date of Patent: January 22, 2019
    Assignee: Omni AI, Inc.
    Inventors: Ming-Jung Seow, Wesley Kenneth Cobb, Gang Xu, Tao Yang, Aaron Poffenberger, Lon W. Risinger, Kishor Adinath Saitwal, Michael S. Yantosca, David M. Solum, Alex David Hemsath, Dennis G. Urech, Duy Trong Nguyen, Charles Richard Morgan
  • Publication number: 20180204068
    Abstract: A machine-learning engine is disclosed that is configured to recognize and learn behaviors, as well as to identify and distinguish between normal and abnormal behavior within a scene, by analyzing movements and/or activities (or absence of such) over time. The machine-learning engine may be configured to evaluate a sequence of primitive events and associated kinematic data generated for an object depicted in a sequence of video frames and a related vector representation. The vector representation is generated from a primitive event symbol stream and a phase space symbol stream, and the streams describe actions of the objects depicted in the sequence of video frames.
    Type: Application
    Filed: March 14, 2018
    Publication date: July 19, 2018
    Inventors: John Eric EATON, Wesley Kenneth COBB, Dennis G. URECH, David S. FRIEDLANDER, Gang XU, Ming-Jung SEOW, Lon W. RISINGER, David M. SOLUM, Tao YANG, Rajkiran K. GOTTUMUKKAL, Kishor Adinath SAITWAL
  • Patent number: 9946934
    Abstract: A machine-learning engine is disclosed that is configured to recognize and learn behaviors, as well as to identify and distinguish between normal and abnormal behavior within a scene, by analyzing movements and/or activities (or absence of such) over time. The machine-learning engine may be configured to evaluate a sequence of primitive events and associated kinematic data generated for an object depicted in a sequence of video frames and a related vector representation. The vector representation is generated from a primitive event symbol stream and a phase space symbol stream, and the streams describe actions of the objects depicted in the sequence of video frames.
    Type: Grant
    Filed: April 21, 2017
    Date of Patent: April 17, 2018
    Assignee: AVIGILON PATENT HOLDING 1 CORPORATION
    Inventors: John Eric Eaton, Wesley Kenneth Cobb, Dennis G. Urech, David S. Friedlander, Gang Xu, Ming-Jung Seow, Lon W. Risinger, David M. Solum, Tao Yang, Rajkiran K. Gottumukkal, Kishor Adinath Saitwal
  • Publication number: 20180046613
    Abstract: Embodiments presented herein describe techniques for generating a linguistic model of input data obtained from a data source (e.g., a video camera). According to one embodiment of the present disclosure, a sequence of symbols is generated based on an ordered stream of normalized vectors generated from the input data. A dictionary of words is generated from combinations of the ordered sequence of symbols based on a frequency at which combinations of symbols appear in the ordered sequence of symbols. A plurality of phrases is generated based an ordered sequence of words from the dictionary observed in the ordered sequence of symbols based on a frequency by which combinations of words in ordered sequence of words appear relative to one another.
    Type: Application
    Filed: March 26, 2017
    Publication date: February 15, 2018
    Applicant: Omni AI, Inc.
    Inventors: Ming-Jung SEOW, Wesley Kenneth COBB, Gang XU, Tao YANG, Aaron POFFENBERGER, Lon W. RISINGER, Kishor Adinath SAITWAL, Michael S. YANTOSCA, David M. SOLUM, Alex David HEMSATH, Dennis G. URECH, Duy Trong NGUYEN, Charles Richard MORGAN
  • Publication number: 20170228598
    Abstract: A machine-learning engine is disclosed that is configured to recognize and learn behaviors, as well as to identify and distinguish between normal and abnormal behavior within a scene, by analyzing movements and/or activities (or absence of such) over time. The machine-learning engine may be configured to evaluate a sequence of primitive events and associated kinematic data generated for an object depicted in a sequence of video frames and a related vector representation. The vector representation is generated from a primitive event symbol stream and a phase space symbol stream, and the streams describe actions of the objects depicted in the sequence of video frames.
    Type: Application
    Filed: April 21, 2017
    Publication date: August 10, 2017
    Inventors: John Eric EATON, Wesley Kenneth COBB, Dennis G. URECH, David S. FRIEDLANDER, Gang XU, Ming-Jung SEOW, Lon W. RISINGER, David M. SOLUM, Tao YANG, Rajkiran K. GOTTUMUKKAL, Kishor Adinath SAITWAL
  • Patent number: 9665774
    Abstract: A machine-learning engine is disclosed that is configured to recognize and learn behaviors, as well as to identify and distinguish between normal and abnormal behavior within a scene, by analyzing movements and/or activities (or absence of such) over time. The machine-learning engine may be configured to evaluate a sequence of primitive events and associated kinematic data generated for an object depicted in a sequence of video frames and a related vector representation. The vector representation is generated from a primitive event symbol stream and a phase space symbol stream, and the streams describe actions of the objects depicted in the sequence of video frames.
    Type: Grant
    Filed: October 28, 2016
    Date of Patent: May 30, 2017
    Assignee: Avigilon Patent Holding 1 Corporation
    Inventors: John Eric Eaton, Wesley Kenneth Cobb, Dennis G. Urech, David S. Friedlander, Gang Xu, Ming-Jung Seow, Lon W. Risinger, David M. Solum, Tao Yang, Rajkiran K. Gottumukkal, Kishor Adinath Saitwal
  • Patent number: 9639521
    Abstract: Embodiments presented herein describe techniques for generating a linguistic model of input data obtained from a data source (e.g., a video camera). According to one embodiment of the present disclosure, a sequence of symbols is generated based on an ordered stream of normalized vectors generated from the input data. A dictionary of words is generated from combinations of the ordered sequence of symbols based on a frequency at which combinations of symbols appear in the ordered sequence of symbols. A plurality of phrases is generated based an ordered sequence of words from the dictionary observed in the ordered sequence of symbols based on a frequency by which combinations of words in ordered sequence of words appear relative to one another.
    Type: Grant
    Filed: August 11, 2014
    Date of Patent: May 2, 2017
    Assignee: Omni AI, Inc.
    Inventors: Ming-Jung Seow, Wesley Kenneth Cobb, Gang Xu, Tao Yang, Aaron Poffenberger, Lon W. Risinger, Kishor Adinath Saitwal, Michael S. Yantosca, David M. Solum, Alex David Hemsath, Dennis G. Urech, Duy Trong Nguyen, Charles Richard Morgan
  • Publication number: 20170046576
    Abstract: A machine-learning engine is disclosed that is configured to recognize and learn behaviors, as well as to identify and distinguish between normal and abnormal behavior within a scene, by analyzing movements and/or activities (or absence of such) over time. The machine-learning engine may be configured to evaluate a sequence of primitive events and associated kinematic data generated for an object depicted in a sequence of video frames and a related vector representation. The vector representation is generated from a primitive event symbol stream and a phase space symbol stream, and the streams describe actions of the objects depicted in the sequence of video frames.
    Type: Application
    Filed: October 28, 2016
    Publication date: February 16, 2017
    Inventors: John Eric EATON, Wesley Kenneth COBB, Dennis G. URECH, David S. FRIEDLANDER, Gang XU, Ming-Jung SEOW, Lon W. RISINGER, David M. SOLUM, Tao YANG, Rajkiran K. GOTTUMUKKAL, Kishor Adinath SAITWAL
  • Patent number: 9489569
    Abstract: A machine-learning engine is disclosed that is configured to recognize and learn behaviors, as well as to identify and distinguish between normal and abnormal behavior within a scene, by analyzing movements and/or activities (or absence of such) over time. The machine-learning engine may be configured to evaluate a sequence of primitive events and associated kinematic data generated for an object depicted in a sequence of video frames and a related vector representation. The vector representation is generated from a primitive event symbol stream and a phase space symbol stream, and the streams describe actions of the objects depicted in the sequence of video frames.
    Type: Grant
    Filed: January 11, 2016
    Date of Patent: November 8, 2016
    Assignee: 9051147 CANADA INC.
    Inventors: John Eric Eaton, Wesley Kenneth Cobb, Dennis G. Urech, David S. Friedlander, Gang Xu, Ming-Jung Seow, Lon W. Risinger, David M. Solum, Tao Yang, Rajkiran K. Gottumukkal, Kishor Adinath Saitwal
  • Publication number: 20160125233
    Abstract: A machine-learning engine is disclosed that is configured to recognize and learn behaviors, as well as to identify and distinguish between normal and abnormal behavior within a scene, by analyzing movements and/or activities (or absence of such) over time. The machine-learning engine may be configured to evaluate a sequence of primitive events and associated kinematic data generated for an object depicted in a sequence of video frames and a related vector representation. The vector representation is generated from a primitive event symbol stream and a phase space symbol stream, and the streams describe actions of the objects depicted in the sequence of video frames.
    Type: Application
    Filed: January 11, 2016
    Publication date: May 5, 2016
    Inventors: John Eric EATON, Wesley Kenneth COBB, Dennis G. URECH, David S. FRIEDLANDER, Gang XU, Ming-Jung SEOW, Lon W. RISINGER, David M. SOLUM, Tao YANG, Rajkiran K. GOTTUMUKKAL, Kishor Adinath SAITWAL
  • Patent number: 9235752
    Abstract: A machine-learning engine is disclosed that is configured to recognize and learn behaviors, as well as to identify and distinguish between normal and abnormal behavior within a scene, by analyzing movements and/or activities (or absence of such) over time. The machine-learning engine may be configured to evaluate a sequence of primitive events and associated kinematic data generated for an object depicted in a sequence of video frames and a related vector representation. The vector representation is generated from a primitive event symbol stream and a phase space symbol stream, and the streams describe actions of the objects depicted in the sequence of video frames.
    Type: Grant
    Filed: December 29, 2014
    Date of Patent: January 12, 2016
    Assignee: 9051147 CANADA INC.
    Inventors: John Eric Eaton, Wesley Kenneth Cobb, Dennis G. Urech, David S. Friedlander, Gang Xu, Ming-Jung Seow, Lon W. Risinger, David M. Solum, Tao Yang, Rajkiran K. Gottumukkal, Kishor Adinath Saitwal