Patents by Inventor David M. Szum

David M. Szum has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6355599
    Abstract: This invention provides a radiation curable coating composition for superconducting wires. The coating composition comprises at least one (meth)acrylate terminated urethane oligomer, at least one adhesion promoter, at least one (meth)acrylate functionalized diluent and at least one free radical photoinitiator.
    Type: Grant
    Filed: November 9, 1999
    Date of Patent: March 12, 2002
    Assignee: DSM Desotech, Inc.
    Inventors: Edward P. Zahora, Steven C. Lapin, David M. Szum, Steven R. Schmid
  • Patent number: 6339666
    Abstract: Optical fiber coatings are disclosed having excellent ribbon stripping and adhesion behavior. The coatings are radiation-curable. The excellent stripping and adhesion behavior can be achieved by several means which include by use of additives, by use of radiation-curable oligomers having higher molecular weight, or by use of coatings having certain thermal properties. Combination of means can be employed. Stripping behavior can be measured by crack propagation and fiber friction measurements.
    Type: Grant
    Filed: April 20, 2001
    Date of Patent: January 15, 2002
    Assignee: DSM N.V.
    Inventors: David M. Szum, Chander P. Chawla, James R. Petisce, John T. Vandeberg, George Pasternack, Timothy E. Bishop, Paul E. Snowwhite, Edward P. Zahora, Stephen C. Lapin
  • Patent number: 6319549
    Abstract: Provided is an improved optical glass fiber, ribbon unit having the capability of providing mid-span access to individual color-coated optical glass fibers contained therein by application of finger pressure from a human hand. The ribbon unit is made of a plurality of coated optical glass fibers each further coated with a cured color-composition; and a matrix material which binds the plurality of color-coated optical glass fibers together, wherein a bonding force between the cured color-composition and the coated optical glass fibers is greater than a bonding force between said cured color-composition and said matrix material, and wherein the matrix material has been selected or formulated to provide a modulus and Tg sufficiently high such that when opposing pressure is applied to the ribbon unit using the fingers of a human hand, the matrix material buckles and separates from said color-coated optical glass optical fibers instead of compressing and absorbing the opposing pressure.
    Type: Grant
    Filed: April 24, 2000
    Date of Patent: November 20, 2001
    Assignee: DSM N.V.
    Inventors: David M Szum, Adrianus G. M. Abel
  • Publication number: 20010033725
    Abstract: Optical fiber coatings are disclosed having excellent ribbon stripping and adhesion behavior. The coatings are radiation-curable. The excellent stripping and adhesion behavior can be achieved by several means which include by use of additives, by use of radiation-curable oligomers having higher molecular weight, or by use of coatings having certain thermal properties. Combination of means can be employed. Stripping behavior can be measured by crack propagation and fiber friction measurements.
    Type: Application
    Filed: April 20, 2001
    Publication date: October 25, 2001
    Inventors: David M. Szum, Chander P. Chawla, James R. Petisce, John T. Vandeberg, George Pasternack, Timothy E. Bishop, Paul E. Snowwhite, Edward P. Zahora, Stephen C. Lapin
  • Patent number: 6306924
    Abstract: This invention provides an improved coating composition for glass substrates that comprises a tetrasubstituted compound. The introduction of a tetrasubstituted compound in a coating composition for a glass substrate, and in particular an optical fiber, acts to delay the rate of deterioration of the glass or optical fiber due to moisture, and improves adhesion between the glass substrate and the coating composition. The introduction of a tetrasubtituted compound into a polymeric coating composition also improves the interlayer adhesion when more than one coating is applied to a glass substrate. This invention further relates to an outer primary coating composition or matrix material that comprises an acid functional ethylenically unsaturated monomer.
    Type: Grant
    Filed: August 21, 1998
    Date of Patent: October 23, 2001
    Assignee: DSM Desotech, Inc.
    Inventor: David M. Szum
  • Patent number: 6301415
    Abstract: Provided is a ribbon assembly containing a plurality of coated optical glass fibers and a matrix material which binds the plurality of coated optical glass fibers together. At least one of the coated optical glass fibers contains an ink coating or colored outer primary coating. At least one of the ink coating, the colored outer primary coating, or the matrix material contains a phospholipid.
    Type: Grant
    Filed: August 5, 1998
    Date of Patent: October 9, 2001
    Assignee: DSM N.V
    Inventors: Edward P. Zahora, Edward J. Murphy, David M. Szum
  • Patent number: 6298189
    Abstract: Optical fiber coatings are disclosed having excellent ribbon stripping and adhesion behavior. The coatings are radiation-curable. The excellent stripping and adhesion behavior can be achieved by several means which include by use of additives, by use of radiation-curable oligomers having higher molecular weight, or by use of coatings having certain thermal properties. Combination of means can be employed. Stripping behavior can be measured by crack propagation and fiber friction measurements.
    Type: Grant
    Filed: March 6, 1998
    Date of Patent: October 2, 2001
    Assignee: DSM N.V.
    Inventors: David M. Szum, Chander P. Chawla, James R. Petisce, John T. Vandeberg, George Pasternack, Timothy E. Bishop, Paul E. Snowwhite, Edward P. Zahora, Stephen C. Lapin
  • Publication number: 20010025062
    Abstract: Radiation-curable inner and outer primary optical fiber coatings are disclosed having both fast cure speed and reduced rates of yellowing. The compositions comprise particular photoinitiators and UV absorbers which are used in amounts to provide the combination of properties. The UV absorber can have ethylenic unsaturation. Outer primary coatings can be formulated to screen inner primary coatings and have fast cure speed.
    Type: Application
    Filed: December 22, 2000
    Publication date: September 27, 2001
    Applicant: DSM N.V.
    Inventors: David M. Szum, Chander P. Chawla, Timothy E. Bishop
  • Publication number: 20010002410
    Abstract: This invention provides an improved coating composition for glass substrates that comprises a tetrasubstituted compound. The introduction of a tetrasubstituted compound in a coating composition for a glass substrate, and in particular an optical fiber, acts to delay the rate of deterioration of the glass or optical fiber due to moisture, and improves adhesion between the glass substrate and the coating composition. The introduction of a tetrasubstituted compound into a polymeric coating composition also improves the interlayer adhesion when more than one coating is applied to a glass substrate. This invention further relates to an outer primary coating composition or matrix material that comprises an acid functional ethylenically unsaturated monomer.
    Type: Application
    Filed: August 21, 1998
    Publication date: May 31, 2001
    Inventor: DAVID M. SZUM
  • Patent number: 6187835
    Abstract: Radiation-curable inner and outer primary optical fiber coatings are disclosed having both fast cure speed and reduced rates of yellowing. The compositions comprise particular photoinitiators and UV absorbers which are used in amounts to provide the combination of properties. The UV absorber can have ethylenic unsaturation. Outer primary coatings can be formulated to screen inner primary coatings and have fast cure speed.
    Type: Grant
    Filed: June 18, 1998
    Date of Patent: February 13, 2001
    Assignee: DSM N.V.
    Inventors: David M. Szum, Chander P. Chawla, Timothy E. Bishop
  • Patent number: 6169126
    Abstract: Optical fiber primary coating systems are disclosed having excellent ribbon stripping and adhesion behavior. The coatings are radiation-curable. The excellent stripping and adhesion behavior can be inner primary coating composition having a slip enhancing component and a high modulus outer primary coating composition. Combination of means can be employed. Stripping behavior can be measured by crack propagation and fiber friction measurements.
    Type: Grant
    Filed: July 15, 1999
    Date of Patent: January 2, 2001
    Assignee: DSM N.V.
    Inventors: David M. Szum, Chander P. Chawla, James R. Petisce, George Pasternack, Timothy E. Bishop, Paul E. Snowwhite, Edward P. Zahora
  • Patent number: 6110593
    Abstract: Optical fiber primary coating systems are disclosed having excellent ribbon stripping and adhesion behavior. The coatings are radiation-curable. The excellent stripping and adhesion behavior can be inner piramry coating composition having a slip enhancing component and a high modulus outer primary coating composition. Combination of means can be employed. Stripping behavior can be measured by crack propagation and fiber friction measurements.
    Type: Grant
    Filed: May 21, 1998
    Date of Patent: August 29, 2000
    Assignee: DSM N.V.
    Inventors: David M. Szum, Chander P. Chawla, James R. Petisce, George Pasternack, Timothy E. Bishop, Paul E. Snowwhite, Edward P. Zahora
  • Patent number: 6085010
    Abstract: Provided is a ribbon assembly having the functional capability of providing mid-span access without the use of additives, monomers or oligomers containing fluorine or silicone. The ribbon assembly is formulated from an oligomer which reduces the surface energy of the ink coating and/or the matrix material.
    Type: Grant
    Filed: August 5, 1998
    Date of Patent: July 4, 2000
    Assignee: DSM N.V.
    Inventors: Edward P. Zahora, Edward J. Murphy, David M. Szum, John T. Vandeberg, Gerry K. Noren, Eva Montgomery
  • Patent number: 6080483
    Abstract: Provided is a radiation-curable, glass optical fiber coating composition which when suitably cured exhibits resistance to attack from hydrocarbon gel cable filing material. The composition containsabout 10 to about 90% by weight of a first radiation-curable oligomer;from 0 to about 40% by weight of a reactive diluent;from 0 to about 40% by weight of a photoinitiator;from 0 to about 10% by weight of a pigment; andabout 10 to about 90% by weight of a second radiation-curable oligomer according to the following formula:R.sup.1 -L.sup.1 -C.sup.1 -L.sup.2 -R.sup.2 (1)where:R.sup.1 and R.sup.2, independently, each represent a radiation-curable functional group;L.sup.1 and L.sup.2, independently, each represent an alkyleneoxy chain having from about 2 to about 40 carbon atoms, wherein L.sup.1 and L.sup.2 are linked to C.sup.1 through an oxygen atomC.sup.1 comprises a hydrocarbon having from about 5 to about 40 carbon atoms and containing at least one cyclic group.
    Type: Grant
    Filed: July 10, 1997
    Date of Patent: June 27, 2000
    Assignee: DSM N.V.
    Inventors: David M. Szum, Timothy E. Bishop, Steven R. Schmid
  • Patent number: 6054217
    Abstract: An improved optical glass fiber ribbon unit, having the capability of providing mid-span access to individual color-coated optical glass fibers contained therein, by application of finger pressure from a human hand, is provided. The ribbon unit is made of a plurality of coated optical glass fibers each further coated with a cured color-composition, and a matrix material which binds the plurality of color-coated optical glass fibers together. A bonding force between the cured color-composition and the coated optical glass fibers is greater than a bonding force between the cured color-composition and the matrix material. The matrix material has been selected or formulated to provide a modulus and Tg sufficiently high such that when opposing pressure is applied to the ribbon unit using the fingers of a human hand, the matrix material buckles and separates from the color-coated optical glass fibers instead of compressing and absorbing the opposing pressure.
    Type: Grant
    Filed: July 31, 1996
    Date of Patent: April 25, 2000
    Assignee: DSM N.V.
    Inventors: David M. Szum, Ad Abel
  • Patent number: 6052503
    Abstract: Provided is an optical glass fiber assembly containing a matrix material and a plurality of coated optical glass fibers bound together by said matrix material, said matrix material having a swell index and/or glass transition temperature which provides the combination of properties of: (i) a swell index of a magnitude functionally capable of facilitating mid-span access to said optical glass fibers by a solvent stripping method of said matrix material from said optical glass fibers; and/or (ii) a glass transition temperature of a magnitude to facilitate end-access to said optical glass fibers by a heat stripping method of said matrix material from said optical glass fibers at an end terminus of said optical glass fiber assembly.
    Type: Grant
    Filed: March 12, 1998
    Date of Patent: April 18, 2000
    Assignee: DSM N.V.
    Inventors: James J. Schouten, David M. Szum, Chander P. Chawla
  • Patent number: 6040357
    Abstract: Provided is radiation-curable ink composition containing a radiation-curable carrier system containing at least one radiation-curable monomer or oligomer and at least one pigment dispersed in the radiation-curable carrier system in an amount sufficient to provide a color which is visible without magnification. The pigment is substantially insoluble in the radiation-curable carrier system whereby the particulate shape of the pigment is substantially retained in the radiation-curable carrier system. The pigment having a particle size that substantially avoids pigment induced microbending of an optical glass fiber coated with the ink coating.
    Type: Grant
    Filed: May 28, 1998
    Date of Patent: March 21, 2000
    Assignee: DSM N.V.
    Inventors: Edward J. Murphy, Jeffrey Classey, David M. Szum
  • Patent number: 6021338
    Abstract: A radiation curable coating composition for superconducting wires including at least one (meth)acrylate terminated urethane oligomer, at least one adhesion promoter, at least one (meth)acrylate functionalized diluent and at least one free radical photoinitiator. The coating composition is able to withstand repeated thermal cycling from the ambient temperature to the critical temperature of the superconducting wire and, because the composition is radiation cured, the superconducting wire is not heated, thus avoiding degrading the superconducting wire.
    Type: Grant
    Filed: December 30, 1996
    Date of Patent: February 1, 2000
    Assignee: DSM Desotech Inc.
    Inventors: Edward P. Zahora, Steven C. Lapin, David M. Szum, Steven R. Schmid
  • Patent number: 5837750
    Abstract: Provided is a radiation-curable, glass optical fiber coating composition which when suitably cured exhibits resistance to attack from hydrocarbon gel cable filing material. The composition containsabout 10 to about 90% by weight of a first radiation-curable oligomer;from 0 to about 40% by weight of a reactive diluent;from 0 to about 40% by weight of a photoinitiator;from 0 to about 10% by weight of a pigment; andabout 10 to about 90% by weight of a second radiation-curable oligomer according to the following formula:R.sup.1 -L.sup.1 -C.sup.1 -L.sup.2 -R.sup.2 (1)where:R.sup.1 and R.sup.2, independently, each represent a radiation-curable functional group;L.sup.1 and L.sup.2, independently, each represent an alkyleneoxy chain having from about 2 to about 40 carbon atoms, wherein L.sup.1 and L.sup.2 are linked to C.sup.1 through an oxygen atomC.sup.1 comprises a hydrocarbon having from about 5 to about 40 carbon atoms and containing at least one cyclic group.
    Type: Grant
    Filed: March 12, 1996
    Date of Patent: November 17, 1998
    Assignee: DSM N.V.
    Inventors: David M. Szum, Timothy E. Bishop, Steven R. Schmid
  • Patent number: 5664041
    Abstract: This invention provides an improved coating composition for glass substrates that comprises a tetrasubstituted compound. The introduction of a tetrasubstituted compound in a coating composition for a glass substrate, and in particular an optical fiber, acts to delay the rate of deterioration of the glass or optical fiber due to moisture, and improves adhesion between the glass substrate and the coating composition. The introduction of a tetrasubstituted compound into a polymeric coating composition also improves the interlayer adhesion when more than one coating is applied to a glass substrate. This invention further relates to an outer primary coating composition or matrix material that comprises an acid functional ethylenically unsaturated monomer.
    Type: Grant
    Filed: August 30, 1994
    Date of Patent: September 2, 1997
    Assignee: DSM Desotech, Inc.
    Inventor: David M. Szum