Patents by Inventor David Mantell

David Mantell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11518092
    Abstract: An additive manufacturing system and method for improving the certainty of removing or etching excess substrate from a stack of printed substrate slices to arrive at a 3D object. The approach includes printing a pseudo image as a shell layer around a desired object slice with less polymer (e.g., thermoplastic) material than the 3D object solid layer slice. This slows the etching process when this pseudo image is reached. The pseudo image may be printed to surround the object polymer image on a printed substrate sheet as a shell that provides notice during the excess substrate removal/cleaning process that the desired polymer image is nearby and extra care must be taken to avoid removal of the desired polymer image. The pseudo image may have a 3D patterned surface that can be recognized by a person doing the sandblasting or recognized automatically by an automated 3D object finisher.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: December 6, 2022
    Assignee: Xerox Corporation
    Inventors: David A. Mantell, Peter J. Nystrom, Marc D. Daniels
  • Publication number: 20220347920
    Abstract: A three-dimensional (3D) object printer operates a radiation source to direct radiation emitted by the radiation source through a porous substrate at a first intensity insufficient to cure a material contained in the porous substrate and at a second intensity sufficient to cure the material after the emitted radiation has passed through the porous substrate. The material is applied to the porous substrate by one or more wipers.
    Type: Application
    Filed: April 29, 2021
    Publication date: November 3, 2022
    Inventors: David A. Mantell, Paul J. McConville, Dinesh Krishna Kumar Jayabal, Viktor Sukhotskiy
  • Patent number: 11440321
    Abstract: A jetting assembly that can be used to print a high-temperature print material such as a metal or metal alloy, an aqueous ink, or another material, includes an actuator for heating a gas such as a non-volatile gas within a gas cavity. The actuator rapidly heats the gas within the gas cavity, which rapidly increases a volume of the gas, thereby applying a pressure to the print material within an expansion channel that is in fluid communication with the gas cavity. In turn, the print material within the expansion channel applies a pressure to the print material within a nozzle bore, which forces a drop of the print material from a nozzle. The jetting assembly further includes a supply inlet that supplies the print material to the expansion chamber and the nozzle bore, for example, from a reservoir.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: September 13, 2022
    Assignee: XEROX CORPORATION
    Inventors: Christopher T. Chungbin, Scott J. Vader, Zachary S. Vader, Kareem N. Tawil, William R. Harris, David A. Mantell, Viktor Sukhotskiy
  • Patent number: 11412755
    Abstract: A method for printing a three-dimensional crystalline structure such as a chocolate layer wherein, after printing, the material has a desired crystal structure and a plurality of non-random cavities. An embodiment can include printing a liquid first layer of material with a printer onto a second layer of material having a crystal structure. Subsequently, the printed liquid first layer is processed to solidify the first layer. During the processing of the printed liquid first layer, the second layer functions as a crystal seed layer through physical contact with the printed liquid first layer and the second layer crystallizes with the crystal structure. In some embodiments, confections may be formed from high-quality chocolate, where the confection has a reduced caloric content with acceptable mouthfeel. In other embodiments, a confection may have a previously unrealized mouthfeel and taste.
    Type: Grant
    Filed: April 16, 2018
    Date of Patent: August 16, 2022
    Assignee: XEROX CORPORATION
    Inventors: David A. Mantell, Andrew W. Hays, Zahra C. Langford
  • Publication number: 20220241866
    Abstract: A slicer in a material drop ejecting three-dimensional (3D) object printer generates machine ready instructions that operate components of a printer, such as actuators and an ejector having at least one nozzle, to form features of an object more precisely than previously known. The instructions generated by the slicer use positional data from an encoder to control the actuators to move the ejector and a platform on which the object is formed relative to one another to form edges of the feature.
    Type: Application
    Filed: January 30, 2021
    Publication date: August 4, 2022
    Inventors: Jack G. Elliot, Rachel L. Tanchak, Derek A. Bryl, Piotr Sokolowski, Erwin Ruiz, David A. Mantell, Brendan McNamara, Peter M. Gulvin, Christopher T. Chungbin
  • Publication number: 20220241865
    Abstract: A slicer in a material drop ejecting three-dimensional (3D) object printer generates machine ready instructions that operate components of a printer, such as actuators and an ejector having at least one nozzle, to form features of an object more precisely than previously known. The instructions generated by the slicer control the actuators to move the ejector and a platform on which the object is formed relative to one another at a constant velocity to form edges of the feature.
    Type: Application
    Filed: January 30, 2021
    Publication date: August 4, 2022
    Inventors: Jack G. Elliot, Rachel L. Tanchak, Derek A. Bryl, Piotr Sokolowski, Erwin Ruiz, David A. Mantell, Brendan McNamara, Peter M. Gulvin, Christopher T. Chungbin
  • Publication number: 20220234110
    Abstract: A slicer in a material drop ejecting three-dimensional (3D) object printer determines the number of material drops to eject to form a perimeter in an object layer and distributes a quantization error over the layers forming the perimeter. The slicer also identifies the location for the first material drop ejected to form the perimeter using a blue noise generator.
    Type: Application
    Filed: January 25, 2021
    Publication date: July 28, 2022
    Inventors: Stuart A. Schweid, David A. Mantell, Christopher T. Chungbin, David G. Tilley, Walter Hsiao, PriyaankaDevi Guggilapu, Daniel Cormier, Dinesh Krishna Kumar Jayabal
  • Publication number: 20220234111
    Abstract: A three-dimensional (3D) metal object manufacturing apparatus is operated to form sloping surfaces having a slope angle of more than 45° from a line that is perpendicular to the structure on which the layer forming the slope surface is formed. The angle corresponds to a step-out distance from the perpendicular line and a maximum individual step-out distance determined from empirically derived data. Multiple passes of an ejection head of the apparatus can be performed within a layer to form a sloped edge and the mass of the sloped structure is distributed within the sloped edge so the edge is formed without defects.
    Type: Application
    Filed: January 27, 2021
    Publication date: July 28, 2022
    Inventors: David A. Mantell, Christopher T. Chungbin, Daniel Cormier, David G. Tilley, Walter Hsiao, PriyaankaDevi Guggilapu, Michael F. Dapiran, Dinesh Krishna Kumar Jayabal
  • Publication number: 20220234298
    Abstract: A slicer in a material drop ejecting three-dimensional (3D) object printer identifies the positions and local densities for a plurality of infill lines within a perimeter to be formed within a layer of an object to be formed by the printer. The local density of each infill line is filtered and a control law is applied to the filtered local density to identify an error in the local density compared to a target density. This process is performed iteratively until the error is within a predetermined tolerance range about the target local density. The error is used to generate machine ready instructions to operate the 3D object printer to achieve the target density for the infill lines.
    Type: Application
    Filed: January 25, 2021
    Publication date: July 28, 2022
    Inventors: Stuart A. Schweid, David A. Mantell, PriyaankaDevi Guggilapu, David G. Tilley, Christopher T. Chungbin, Walter Hsiao, Dinesh Krishna Kumar Jayabal, Daniel Cormier
  • Patent number: 11383417
    Abstract: An additive manufacturing system includes a heater for converting a filament of extrusion material into thermoplastic material. The heater has a channel configured to change the cross-sectional shape of the filament to a cross-sectional shape that has a greater surface area than the surface area of the filament before the heater receives the filament. The channel of the heater can also be configured to drive the center portion of the filament toward the heated walls of the channel and to mix thermoplastic material in the channel while exposing the center portion of the filament to the heated wall of the channel.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: July 12, 2022
    Assignee: Xerox Corporation
    Inventors: David A. Mantell, Peter J. Nystrom, Christopher G. Lynn, Jun Ma, Mark A. Cellura, Gary D. Redding
  • Patent number: 11338523
    Abstract: An additive manufacturing system has a controller configured to modify numerical control programming instructions to form interlocking structures that improve object structural integrity in the Z-direction. The interlocking structures are produced by forming one layer with swaths that are separated by gaps and another layer that is formed over the gaps to fill the gaps and lay over the swaths forming the gaps.
    Type: Grant
    Filed: June 10, 2020
    Date of Patent: May 24, 2022
    Assignee: Xerox Corporation
    Inventors: David A. Mantell, Christopher G. Lynn, Jason O'Neil, Priyaanka D. Guggilapu, Peter J. Nystrom
  • Patent number: 11318666
    Abstract: A system for producing three-dimensional objects forms fluid paths within the support structure to facilitate the removal of the support structure following manufacture of the object. The system includes a first ejector configured to eject a first material towards a platen to form an object, a second ejector configured to eject a second material towards the platen to form support for portions of the object, at least one portion of the support having a body with at least one fluid path that connects at least one opening in the body to at least one other opening in the body, and a fluid source that connects to the at least one fluid path of the support to enable fluid to flow through the at least one fluid path to remove at least an inner portion of the support from the object.
    Type: Grant
    Filed: June 23, 2020
    Date of Patent: May 3, 2022
    Assignee: Xerox Corporation
    Inventors: David A. Mantell, Andrew W. Hays, Linn C. Hoover, Ron E. Dufort, Erwin Ruiz, Patrick J. Howe
  • Publication number: 20220032550
    Abstract: A three-dimensional (3D) metal object manufacturing apparatus selects operational parameters for operation of the printer to form conductive metal traces on substrates with dimensions within appropriate tolerances and with sufficient conductive material to carry electrical currents without burning up or becoming too hot. The apparatus identifies the material of the substrate and the bulk metal being melted for ejection and uses this identification data to select the operational parameters. Thus, the apparatus can form conductive traces and circuits on a wide range of substrate materials including polymeric substrates, semiconductor materials, oxide layers on semiconductor materials, glass, and other crystalline materials.
    Type: Application
    Filed: July 31, 2020
    Publication date: February 3, 2022
    Inventors: David A. Mantell, Christopher T. Chungbin, Daniel R. Cormier, Denis Cormier, Manoj Meda, Dinesh Krishna Kumar Jayabal
  • Patent number: 11235382
    Abstract: A method for printing a structure, the structure including a plurality of pillars. The method for printing can include ejecting only a first drop of a print material such as a liquid metal sequentially at each of a plurality of pillar locations, then ejecting only a second drop of the print material sequentially onto the first drop at each of the plurality of print locations. Additional drops can be ejected at two or more of the pillar locations to form the plurality of pillars. Ejecting only a first drop at each pillar location allows the first drop to cure (i.e., cool or dry) before ejecting the second drop. The printer continues printing while the drops cure, thus improving processing efficiency and increasing production throughput.
    Type: Grant
    Filed: October 28, 2019
    Date of Patent: February 1, 2022
    Assignees: XEROX CORPORATION, PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: David A. Mantell, Daniel R. Cormier, Christopher T. Chungbin, Zachary S. Vader, Viktor Sukhotskiy, Scott J. Vader, David Tilley
  • Patent number: 11230063
    Abstract: An additive manufacturing system operates an extruder to extrude a swath of thermoplastic material through at least two nozzles of the extruder to form a swath of thermoplastic material along a path of relative movement between the extruder and a platform. The speed of the extruder along the path corresponds to a predetermined speed selected with reference to an orientation of the extruder and the angle for the path of relative movement between the extruder and the platform. A controller in the system operates at least one actuator operatively connected to at least one of the extruder and the platform to move the at least one of the extruder and the platform relative to the other of the extruder and the platform along the path of relative movement at the predetermined speed to make the swath of the thermoplastic material contiguous in a cross-process direction.
    Type: Grant
    Filed: May 20, 2020
    Date of Patent: January 25, 2022
    Assignee: Xerox Corporation
    Inventor: David A. Mantell
  • Patent number: 11220056
    Abstract: A method of operating an extruder assembly in a three-dimensional object printer translates and rotates an extruder body having an extrusion slot to produce three-dimensional objects more quickly and with greater precision. The method also includes rotating and moving one or more shutter bodies with respect to the extrusion slot to form a continuous filament of material of various sizes and shapes.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: January 11, 2022
    Assignee: Xerox Corporation
    Inventors: David A. Mantell, Peter J. Nystrom, Christopher G. Lynn
  • Patent number: 11207813
    Abstract: An additive manufacturing system has a plurality of manifolds in an extruder. Each manifold is connected to at least one nozzle of the extruder so the at least one nozzle extrudes thermoplastic material through a corresponding aperture in a faceplate mounted to the extruder. A plurality of valves is configured between each manifold and each nozzle connected to the manifold so the nozzles connected to a manifold extrude thermoplastic material from the manifold selectively. The faceplate is also configured for rotation about an axis perpendicular to the faceplate so different orientations of the nozzles and the apertures of the faceplate can be obtained. The different manifolds of the extruder enable a plurality of thermoplastic materials having different properties to be extruded simultaneously so the materials can join to one another while the materials are at an elevated temperature.
    Type: Grant
    Filed: March 3, 2020
    Date of Patent: December 28, 2021
    Assignee: Xerox Corporation
    Inventors: David A. Mantell, Peter J. Nystrom
  • Publication number: 20210387417
    Abstract: An additive manufacturing system has a controller configured to modify numerical control programming instructions to form interlocking structures that improve object structural integrity in the Z-direction. The interlocking structures are produced by forming one layer with swaths that are separated by gaps and another layer that is formed over the gaps to fill the gaps and lay over the swaths forming the gaps.
    Type: Application
    Filed: June 10, 2020
    Publication date: December 16, 2021
    Inventors: David A. Mantell, Christopher G. Lynn, Jason O'Neil, Priyaanka D. Guggilapu, Peter J. Nystrom
  • Publication number: 20210276254
    Abstract: An additive manufacturing system has a controller configured to operate an actuator to move a multi-nozzle extruder in an XY plane and rotate the multi-nozzle extruder about an axis perpendicular to the XY plane while operating the multi-nozzle extruder to form swaths in the XY plane. The controller operates the actuator and the multi-nozzle extruder to keep the nozzles of the extruder within perimeters formed for an object and to vary the speed and rotation of the extruder while extruding material to form precise structures.
    Type: Application
    Filed: March 9, 2020
    Publication date: September 9, 2021
    Inventors: David A. Mantell, Christopher G. Lynn, Jason O'Neil, Priyaanka D. Guggilapu, Peter J. Nystrom
  • Patent number: 11104118
    Abstract: An apparatus changes the temperature of thermoplastic material in an extruder head to reduce the time for producing an object. The apparatus includes a cooling device located near the one or more nozzles of the extruder head to change the temperature of the thermoplastic material extruded by the extruder head. The apparatus cools the thermoplastic material to enhance the formation of exterior object features. A heater can also be positioned near the nozzle zone to heat the thermoplastic material to reduce the time for raising the viscosity of the thermoplastic material for forming interior regions of the object.
    Type: Grant
    Filed: August 20, 2019
    Date of Patent: August 31, 2021
    Assignee: Xerox Corporation
    Inventors: David A. Mantell, Peter J. Nystrom, Christopher G. Lynn