Patents by Inventor David Messih

David Messih has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9834187
    Abstract: A control system for a vehicle includes a speed sensor that generates a vehicle speed signal. A sway detection sensor generates an oscillation signal. A brake control is coupled to a vehicle brake and is associated with a trailer brake. A controller is coupled to a stability control system and brakes one or more of the vehicle brake and the trailer brake and in response to the oscillation signal.
    Type: Grant
    Filed: January 11, 2007
    Date of Patent: December 5, 2017
    Assignee: Ford Global Technologies, LLC
    Inventors: Kirk Englert, Doug Marsden, Erik Chubb, David Messih, Paul Schmitt
  • Patent number: 9290165
    Abstract: A method of controlling a controllable chassis system or a safety system (44) for a vehicle (10) includes determining an added mass placed on the vehicle and relative to a known vehicle mass. A vehicle characteristic is adjusted in response to the added mass. A control system (18) for an automotive vehicle (10) includes a sensor (20, 28-42) that generates a signal. A controller (26) determines added mass on the vehicle (10) in response to the signal and adjusts a vehicle characteristic in response to the added mass.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: March 22, 2016
    Assignee: Ford Global Technologies
    Inventors: David Messih, Jianbo Lu
  • Patent number: 8050857
    Abstract: A control system (18) and method for an automotive vehicle (10) includes a roll rate sensor (34) for generating a roll rate signal, a lateral acceleration sensor (32) for generating a lateral acceleration signal, a longitudinal acceleration sensor (36) for generating a longitudinal acceleration signal, and a yaw rate sensor (28) for generating a yaw rate signal. A safety device or system (44) and the sensors are coupled to a controller. The controller (26) determines an added mass and the height of the added mass on the vehicle, or a roll gradient, a roll acceleration coefficient, and/or a roll rate parameter that take into account the added mass and height from the roll rate, the lateral acceleration, the longitudinal acceleration, and the yaw rate of the vehicle, and controls the safety system in response thereto.
    Type: Grant
    Filed: January 5, 2010
    Date of Patent: November 1, 2011
    Assignee: Ford Global Technologies
    Inventors: Jianbo Lu, Keith Mattson, David Messih, Erik Chubb, Albert Salib
  • Patent number: 7899594
    Abstract: A control system (18) and method for an automotive vehicle (10) includes a controller (26) that determines whether or not a potential load change has occurred in a load change detector (59). A load change detector (59) may be coupled to various sensors to determine whether or not a change in load has occurred. If a change in load has occurred an adaptively determined roll condition parameter such as a roll acceleration coefficient, a roll rate parameter or a roll gradient may be reset. If a potential load change has not occurred, then a newly determined value for an adaptive roll condition may be included in a revised adaptive roll condition average. A safety device (44) may be controlled in response to the revised adaptive roll condition.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: March 1, 2011
    Assignee: Ford Global Technologies
    Inventors: David Messih, Jianbo Lu
  • Patent number: 7877200
    Abstract: A control system (18) and method for an automotive vehicle (10) includes a roll rate sensor (34) for generating a roll rate signal, a lateral acceleration sensor (32) for generating a lateral acceleration signal, a longitudinal acceleration sensor (36) for generating a longitudinal acceleration signal, and a yaw rate sensor (28) for generating a yaw rate signal. A safety device or system (44) and the sensors are coupled to a controller. The controller (26) determines an added mass and the height of the added mass on the vehicle, or a roll gradient, a roll acceleration coefficient, and/or a roll rate parameter that take into account the added mass and height from the roll rate, the lateral acceleration, the longitudinal acceleration, and the yaw rate of the vehicle, and controls the safety system in response thereto.
    Type: Grant
    Filed: January 5, 2010
    Date of Patent: January 25, 2011
    Assignee: Ford Global Technologies
    Inventors: Jianbo Lu, Keith Mattson, David Messih, Erik Chubb, Albert Salib
  • Patent number: 7877178
    Abstract: A control system (18) and method for an automotive vehicle (10) includes a roll rate sensor (34) for generating a roll rate signal, a lateral acceleration sensor (32) for generating a lateral acceleration signal, a longitudinal acceleration sensor (36) for generating a longitudinal acceleration signal, and a yaw rate sensor (28) for generating a yaw rate signal. A safety device or system (44) and the sensors are coupled to a controller. The controller (26) determines an added mass and the height of the added mass on the vehicle, or a roll gradient, a roll acceleration coefficient, and/or a roll rate parameter that take into account the added mass and height from the roll rate, the lateral acceleration, the longitudinal acceleration, and the yaw rate of the vehicle, and controls the safety system in response thereto.
    Type: Grant
    Filed: January 5, 2010
    Date of Patent: January 25, 2011
    Assignee: Ford Global Technologies
    Inventors: Jianbo Lu, Keith Mattson, David Messih, Erik Chubb, Albert Salib
  • Patent number: 7877199
    Abstract: A control system (18) and method for an automotive vehicle (10) includes a roll rate sensor (34) for generating a roll rate signal, a lateral acceleration sensor (32) for generating a lateral acceleration signal, a longitudinal acceleration sensor (36) for generating a longitudinal acceleration signal, and a yaw rate sensor (28) for generating a yaw rate signal. A safety device or system (44) and the sensors are coupled to a controller. The controller (26) determines an added mass and the height of the added mass on the vehicle, or a roll gradient, a roll acceleration coefficient, and/or a roll rate parameter that take into account the added mass and height from the roll rate, the lateral acceleration, the longitudinal acceleration, and the yaw rate of the vehicle, and controls the safety system in response thereto.
    Type: Grant
    Filed: January 5, 2010
    Date of Patent: January 25, 2011
    Assignee: Ford Global Technologies
    Inventors: Jianbo Lu, Keith Mattson, David Messih, Erik Chubb, Albert Salib
  • Patent number: 7877201
    Abstract: A control system (18) and method for an automotive vehicle (10) includes a roll rate sensor (34) for generating a roll rate signal, a lateral acceleration sensor (32) for generating a lateral acceleration signal, a longitudinal acceleration sensor (36) for generating a longitudinal acceleration signal, and a yaw rate sensor (28) for generating a yaw rate signal. A safety device or system (44) and the sensors are coupled to a controller. The controller (26) determines an added mass and the height of the added mass on the vehicle, or a roll gradient, a roll acceleration coefficient, and/or a roll rate parameter that take into account the added mass and height from the roll rate, the lateral acceleration, the longitudinal acceleration, and the yaw rate of the vehicle, and controls the safety system in response thereto.
    Type: Grant
    Filed: January 5, 2010
    Date of Patent: January 25, 2011
    Assignee: Ford Global Technologies
    Inventors: Jianbo Lu, Keith Mattson, David Messih, Erik Chubb, Albert Salib
  • Publication number: 20110010048
    Abstract: A method of controlling a controllable chassis system or a safety system (44) for a vehicle (10) includes determining an added mass placed on the vehicle and relative to a known vehicle mass. A vehicle characteristic is adjusted in response to the added mass. A control system (18) for an automotive vehicle (10) includes a sensor (20, 28-42) that generates a signal. A controller (26) determines added mass on the vehicle (10) in response to the signal and adjusts a vehicle characteristic in response to the added mass.
    Type: Application
    Filed: September 21, 2010
    Publication date: January 13, 2011
    Inventors: David Messih, Jianbo Lu
  • Patent number: 7826948
    Abstract: A method of controlling a controllable chassis system or a safety system (44) for a vehicle (10) includes determining an added mass placed on the vehicle and relative to a known vehicle mass. A vehicle characteristic is adjusted in response to the added mass. A control system (18) for an automotive vehicle (10) includes a sensor (20, 28-42) that generates a signal. A controller (26) determines added mass on the vehicle (10) in response to the signal and adjusts a vehicle characteristic in response to the added mass.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: November 2, 2010
    Assignee: Ford Global Technologies
    Inventors: David Messih, Jianbo Lu
  • Publication number: 20100168961
    Abstract: A control system (18) and method for an automotive vehicle (10) includes a controller (26) that determines whether or not a potential load change has occurred in a load change detector (59). A load change detector (59) may be coupled to various sensors to determine whether or not a change in load has occurred. If a change in load has occurred an adaptively determined roll condition parameter such as a roll acceleration coefficient, a roll rate parameter or a roll gradient may be reset. If a potential load change has not occurred, then a newly determined value for an adaptive roll condition may be included in a revised adaptive roll condition average. A safety device (44) may be controlled in response to the revised adaptive roll condition.
    Type: Application
    Filed: March 10, 2010
    Publication date: July 1, 2010
    Inventors: David Messih, Jianbo Lu
  • Patent number: 7729829
    Abstract: A vehicle suspension system (19) includes a suspension (47). A lateral acceleration sensor (32) generates a lateral acceleration signal. A roll rate sensor (34) generates a roll rate signal. A controller (26) detects an irregularity in the suspension in response to the lateral acceleration signal and the roll rate signal. A method of detecting suspension irregularities in a vehicle (10) includes the generating of a lateral acceleration signal and a roll rate signal. Roll angle is determined in response to the lateral acceleration signal and roll rate signal. A roll gradient, a roll acceleration coefficient, and a roll damping parameter are determined in response to at least the roll angle. The roll gradient, the roll acceleration coefficient, and the roll damping parameter are compared to associated nominal values. A suspension irregularity is indicated in response to the comparison.
    Type: Grant
    Filed: September 15, 2006
    Date of Patent: June 1, 2010
    Assignee: Ford Global Technologies
    Inventors: David Messih, Jianbo Lu, Albert Salib, Erik Chubb
  • Patent number: 7715965
    Abstract: A control system (18) and method for an automotive vehicle (10) includes a controller (26) that determines whether or not a potential load change has occurred in a load change detector (59). A load change detector (59) may be coupled to various sensors to determine whether or not a change in load has occurred. If a change in load has occurred an adaptively determined roll condition parameter such as a roll acceleration coefficient, a roll rate parameter or a roll gradient may be reset. If a potential load change has not occurred, then a newly determined value for an adaptive roll condition may be included in a revised adaptive roll condition average. A safety device (44) may be controlled in response to the revised adaptive roll condition.
    Type: Grant
    Filed: October 25, 2004
    Date of Patent: May 11, 2010
    Assignee: Ford Global Technologies
    Inventors: David Messih, Jianbo Lu
  • Publication number: 20100106360
    Abstract: A control system (18) and method for an automotive vehicle (10) includes a roll rate sensor (34) for generating a roll rate signal, a lateral acceleration sensor (32) for generating a lateral acceleration signal, a longitudinal acceleration sensor (36) for generating a longitudinal acceleration signal, and a yaw rate sensor (28) for generating a yaw rate signal. A safety device or system (44) and the sensors are coupled to a controller. The controller (26) determines an added mass and the height of the added mass on the vehicle, or a roll gradient, a roll acceleration coefficient, and/or a roll rate parameter that take into account the added mass and height from the roll rate, the lateral acceleration, the longitudinal acceleration, and the yaw rate of the vehicle, and controls the safety system in response thereto.
    Type: Application
    Filed: January 5, 2010
    Publication date: April 29, 2010
    Inventors: Jianbo Lu, Keith Mattson, David Messih, Erik Chubb, Albert Salib
  • Publication number: 20100106376
    Abstract: A control system (18) and method for an automotive vehicle (10) includes a roll rate sensor (34) for generating a roll rate signal, a lateral acceleration sensor (32) for generating a lateral acceleration signal, a longitudinal acceleration sensor (36) for generating a longitudinal acceleration signal, and a yaw rate sensor (28) for generating a yaw rate signal. A safety device or system (44) and the sensors are coupled to a controller. The controller (26) determines an added mass and the height of the added mass on the vehicle, or a roll gradient, a roll acceleration coefficient, and/or a roll rate parameter that take into account the added mass and height from the roll rate, the lateral acceleration, the longitudinal acceleration, and the yaw rate of the vehicle, and controls the safety system in response thereto.
    Type: Application
    Filed: January 5, 2010
    Publication date: April 29, 2010
    Inventors: Jianbo Lu, Keith Mattson, David Messih, Erik Chubb, Albert Salib
  • Publication number: 20100106369
    Abstract: A control system (18) and method for an automotive vehicle (10) includes a roll rate sensor (34) for generating a roll rate signal, a lateral acceleration sensor (32) for generating a lateral acceleration signal, a longitudinal acceleration sensor (36) for generating a longitudinal acceleration signal, and a yaw rate sensor (28) for generating a yaw rate signal. A safety device or system (44) and the sensors are coupled to a controller. The controller (26) determines an added mass and the height of the added mass on the vehicle, or a roll gradient, a roll acceleration coefficient, and/or a roll rate parameter that take into account the added mass and height from the roll rate, the lateral acceleration, the longitudinal acceleration, and the yaw rate of the vehicle, and controls the safety system in response thereto.
    Type: Application
    Filed: January 5, 2010
    Publication date: April 29, 2010
    Inventors: Jianbo Lu, Keith Mattson, David Messih, Erik Chubb, Albert Salib
  • Publication number: 20100106370
    Abstract: A control system (18) and method for an automotive vehicle (10) includes a roll rate sensor (34) for generating a roll rate signal, a lateral acceleration sensor (32) for generating a lateral acceleration signal, a longitudinal acceleration sensor (36) for generating a longitudinal acceleration signal, and a yaw rate sensor (28) for generating a yaw rate signal. A safety device or system (44) and the sensors are coupled to a controller. The controller (26) determines an added mass and the height of the added mass on the vehicle, or a roll gradient, a roll acceleration coefficient, and/or a roll rate parameter that take into account the added mass and height from the roll rate, the lateral acceleration, the longitudinal acceleration, and the yaw rate of the vehicle, and controls the safety system in response thereto.
    Type: Application
    Filed: January 5, 2010
    Publication date: April 29, 2010
    Inventors: Jianbo Lu, Keith Mattson, David Messih, Erik Chubb, Albert Salib
  • Publication number: 20100106377
    Abstract: A control system (18) and method for an automotive vehicle (10) includes a roll rate sensor (34) for generating a roll rate signal, a lateral acceleration sensor (32) for generating a lateral acceleration signal, a longitudinal acceleration sensor (36) for generating a longitudinal acceleration signal, and a yaw rate sensor (28) for generating a yaw rate signal. A safety device or system (44) and the sensors are coupled to a controller. The controller (26) determines an added mass and the height of the added mass on the vehicle, or a roll gradient, a roll acceleration coefficient, and/or a roll rate parameter that take into account the added mass and height from the roll rate, the lateral acceleration, the longitudinal acceleration, and the yaw rate of the vehicle, and controls the safety system in response thereto.
    Type: Application
    Filed: January 5, 2010
    Publication date: April 29, 2010
    Inventors: Jianbo Lu, Keith Mattson, David Messih, Erik Chubb, Albert Salib
  • Patent number: 7668645
    Abstract: A control system (18) and method for an automotive vehicle (10) includes a roll rate sensor (34) for generating a roll rate signal, a lateral acceleration sensor (32) for generating a lateral acceleration signal, a longitudinal acceleration sensor (36) for generating a longitudinal acceleration signal, and a yaw rate sensor (28) for generating a yaw rate signal. A safety device or system (44) and the sensors are coupled to a controller. The controller (26) determines an added mass and the height of the added mass on the vehicle, or a roll gradient, a roll acceleration coefficient, and/or a roll rate parameter that take into account the added mass and height from the roll rate, the lateral acceleration, the longitudinal acceleration, and the yaw rate of the vehicle, and controls the safety system in response thereto.
    Type: Grant
    Filed: October 15, 2004
    Date of Patent: February 23, 2010
    Assignee: Ford Global Technologies
    Inventors: Jianbo Lu, Keith Mattson, David Messih, Erik Chubb, Albert Salib
  • Publication number: 20080172163
    Abstract: A control system for a vehicle includes a speed sensor that generates a vehicle speed signal. A sway detection sensor generates an oscillation signal. A brake control is coupled to a vehicle brake and is associated with a trailer brake. A controller is coupled to a stability control system and brakes one or more of the vehicle brake and the trailer brake and in response to the oscillation signal.
    Type: Application
    Filed: January 11, 2007
    Publication date: July 17, 2008
    Applicants: FORD MOTOR COMPANY, Ford Global Technologies, LLC
    Inventors: Kirk Englert, Doug Marsden, Erik Chubb, David Messih, Paul Schmitt