Patents by Inventor David Milam

David Milam has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070122317
    Abstract: A first aspect of the present disclosure includes a method of controlling nitric oxides emissions. The method may include producing an exhaust gas stream containing NOx and supplying the exhaust gas stream to an exhaust passage. The method may further comprise supplying ammonia to the exhaust passage at a location upstream of a first selective catalytic reduction catalyst, wherein the amount of ammonia supplied at the first location is less than about 90% of the effective amount of ammonia needed for reduction of all NOx at the first location. Further, ammonia may be supplied to the exhaust passage at a second location downstream of the first selective catalytic reduction catalyst and upstream of a second selective catalytic reduction catalyst.
    Type: Application
    Filed: November 30, 2005
    Publication date: May 31, 2007
    Inventors: James Driscoll, David Milam
  • Publication number: 20060243353
    Abstract: A weld joins a thin overlay of low carbon steel to a base that contains high carbon steel, at least at its surface along which the weld is formed. The weld may be effected by fusion (melting) or by solid-state diffusion. With either it creates a heat affected zone (HAZ) in the base around the weld. The HAZ contains enough austenite, and perhaps bainite as well, to render the HAZ relatively ductile and also crack resistant. Adjacent to the weld the HAZ has a hardness that does not exceed 58 HRC. The weld may be produced with a high energy beam or with resistance welding equipment.
    Type: Application
    Filed: April 29, 2005
    Publication date: November 2, 2006
    Inventor: David Milam
  • Publication number: 20050063629
    Abstract: A vehicle differential includes a housing having bearing seats and a carrier provided with stub shafts which project into the bearing seats. The carrier is supported in the housing on two single row tapered roller bearings which allow the carrier to rotate, but confine it radially and axially. The housing also contains a beveled pinion which meshes with a beveled ring gear that is attached to the carrier. The two bearings are mounted in opposition and each includes a cup that is located in the bearing seat for that bearing, a cone that fits around the stub axle that projects into that bearing seat, and tapered rollers located between the cup and cone. Each bearing seat contains an internal thread and the bearing cup which fits into the seat has an external thread that engages the internal thread. Each cup also carries a locking ring which is engaged by an adjustment tool to turn the cup, but is later deformed into the housing to secure the cup against rotation.
    Type: Application
    Filed: September 22, 2003
    Publication date: March 24, 2005
    Inventors: Glenn Fahrni, David Milam, Michael Marcelli, Christopher Marks, Kofi Obeng, Scott Russell, Byron Roubanes, Gary Stoffer
  • Patent number: 6484696
    Abstract: A method of controlling a hydraulic system is preferably applied to common rail fuel injection systems. The problem in these systems is to control pressure in the common rail while at the same time maintaining the fluid supply to the rail in a way that precisely meets the dynamically changing consumption demands on the hydraulic system. In order to control the hydraulic system, the present invention contemplates the combination of a standard feedback controller with observer models of the various hardware items that make up the hydraulic system. Using this strategy, the system can generally be thought of as controlling fluid supply in an open loop type fashion based upon the consumption rates estimated by the various observer models, and utilizing a conventional feedback controller to make the slight pump adjustments needed to control pressure and to correct for any errors between the actual hardware performance and that predicted by the observer models.
    Type: Grant
    Filed: April 3, 2001
    Date of Patent: November 26, 2002
    Assignee: Caterpillar Inc.
    Inventors: Travis E. Barnes, Michael S. Lukich, David Milam, George M. Matta, Douglas E. Handly, Denis El Darazi, Meixing Lu, Nolan W. Wartick
  • Publication number: 20020139350
    Abstract: A method of controlling a hydraulic system is preferably applied to common rail fuel injection systems. The problem in these systems is to control pressure in the common rail while at the same time maintaining the fluid supply to the rail in a way that precisely meets the dynamically changing consumption demands on the hydraulic system. In order to control the hydraulic system, the present invention contemplates the combination of a standard feedback controller with observer models of the various hardware items that make up the hydraulic system. Using this strategy, the system can generally be thought of as controlling fluid supply in an open loop type fashion based upon the consumption rates estimated by the various observer models, and utilizing a conventional feedback controller to make the slight pump adjustments needed to control pressure and to correct for any errors between the actual hardware performance and that predicted by the observer models.
    Type: Application
    Filed: April 3, 2001
    Publication date: October 3, 2002
    Inventors: Travis E. Barnes, Michael S. Lukich, David Milam, George M. Matta, Douglas E. Handly, Denis El Darazi, Meixing Lu, Nolan W. Wartick
  • Patent number: 3999865
    Abstract: A system is described for determining the mechanism responsible for laser-induced damage in a sample which utilizes a procedure of sequentially irradiating a large number of sites using a tightly focused laser beam whose intensity is constant in time. A statistical analysis of survival times yields a determination that damage was due to one of the following mechanisms:1. linear absorption,2. nonlinear absorption,3. absorbing inclusions,4. mechanical defects, or5. electron-avalanche breakdown.
    Type: Grant
    Filed: December 9, 1974
    Date of Patent: December 28, 1976
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: David Milam, Rudolph A. Bradbury, Richard H. Picard, Michael Bass