Patents by Inventor David Milliner

David Milliner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10903885
    Abstract: An apparatus includes feeds to form analog beams. The feeds are divided into panels. The apparatus includes processing circuitry that divides a target area for communications coverage into regions, including a first region and a second region neighboring each other. The processing circuitry generates, for the first region, a first plurality of analog beams, forming a first cluster. The processing circuitry generates, in the first cluster from the first plurality of analog beams, a first plurality of hybrid beams arranged in a first arrangement in the first cluster. The processing circuitry generates, for the second region, a second plurality of analog beams, forming a second cluster. The processing circuitry generates, in the second cluster from the second plurality of analog beams, a second plurality of hybrid beams arranged in a second arrangement that is adjacent to the first plurality of hybrid beams in the first arrangement.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: January 26, 2021
    Assignee: RKF Engineering Solutions LLC
    Inventors: Jeffrey Freedman, Michael Mandell, Phil Rubin, Ted Kaplan, David Milliner, David Marshack, Erik Halvorson
  • Publication number: 20200244328
    Abstract: An apparatus includes feeds to form analog beams. The feeds are divided into panels. The apparatus includes processing circuitry that divides a target area for communications coverage into regions, including a first region and a second region neighboring each other. The processing circuitry generates, for the first region, a first plurality of analog beams, forming a first cluster. The processing circuitry generates, in the first cluster from the first plurality of analog beams, a first plurality of hybrid beams arranged in a first arrangement in the first cluster. The processing circuitry generates, for the second region, a second plurality of analog beams, forming a second cluster. The processing circuitry generates, in the second cluster from the second plurality of analog beams, a second plurality of hybrid beams arranged in a second arrangement that is adjacent to the first plurality of hybrid beams in the first arrangement.
    Type: Application
    Filed: January 31, 2020
    Publication date: July 30, 2020
    Inventors: Jeffrey Freedman, Michael Mandell, Phil Rubin, Ted Kaplan, David Milliner, David Marshack, Erik Halvorson
  • Publication number: 20200186220
    Abstract: An apparatus includes a plurality of feeds that form analog beams. The plurality of feeds is divided into a plurality of panels, each panel including one or more feeds from the plurality of feeds. The apparatus also includes processing circuitry, which determines a target area for communications coverage and divides the target area into a plurality of regions. The processing circuitry generates, for each region, a plurality of analog beams. A subset of panels of the plurality of panels generates one or more analog beams of the plurality of analog beams. The plurality of analog beams covering each region forms a cluster. The processing circuitry generates, in each cluster, one or more hybrid beams. Each hybrid beam is a digital beam that is generated by combining one or more analog beams of the plurality of analog beams corresponding to the cluster.
    Type: Application
    Filed: January 13, 2020
    Publication date: June 11, 2020
    Inventors: Jeffrey Freedman, Michael Mandell, Phil Rubin, Ted Kaplan, David Milliner, David Marshack, Erik Halvorson
  • Patent number: 10554276
    Abstract: An apparatus includes feeds to form analog beams. The feeds are divided into panels. The apparatus includes processing circuitry that divides a target area for communications coverage into regions, including a first region and a second region neighboring each other. The processing circuitry generates, for the first region, a first plurality of analog beams, forming a first cluster. The processing circuitry generates, in the first cluster from the first plurality of analog beams, a first plurality of hybrid beams arranged in a first arrangement in the first cluster. The processing circuitry generates, for the second region, a second plurality of analog beams, forming a second cluster. The processing circuitry generates, in the second cluster from the second plurality of analog beams, a second plurality of hybrid beams arranged in a second arrangement that is adjacent to the first plurality of hybrid beams in the first arrangement.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: February 4, 2020
    Assignee: RKF Engineering Solutions LLC
    Inventors: Jeffrey Freedman, Michael Mandell, Phil Rubin, Ted Kaplan, David Milliner, David Marshack, Erik Halvorson
  • Patent number: 10536202
    Abstract: An apparatus includes a plurality of feeds that form analog beams. The plurality of feeds is divided into a plurality of panels, each panel including one or more feeds from the plurality of feeds. The apparatus also includes processing circuitry, which determines a target area for communications coverage and divides the target area into a plurality of regions. The processing circuitry generates, for each region, a plurality of analog beams. A subset of panels of the plurality of panels generates one or more analog beams of the plurality of analog beams. The plurality of analog beams covering each region forms a cluster. The processing circuitry generates, in each cluster, one or more hybrid beams. Each hybrid beam is a digital beam that is generated by combining one or more analog beams of the plurality of analog beams corresponding to the cluster.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: January 14, 2020
    Assignee: RKF Engineering Solutions LLC
    Inventors: Jeffrey Freedman, Michael Mandell, Phil Rubin, Ted Kaplan, David Milliner, David Marshack, Erik Halvorson
  • Patent number: 10511378
    Abstract: Fade conditions are determined for each gateway in gateway clusters of a set of gateway clusters. A proper subset of the gateway clusters is selected based on the fade conditions determined for each gateway. A beam plan is determined based on the proper subset of the gateway clusters. The beam plan is executed.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: December 17, 2019
    Assignee: RKF Engineering Solutions LLC
    Inventors: Jeffrey Freedman, Michael Mandell, Phil Rubin, Ted Kaplan, David Milliner, David Marshack, Erik Halvorson
  • Publication number: 20190115975
    Abstract: Fade conditions are determined for each gateway in gateway clusters of a set of gateway clusters. A proper subset of the gateway clusters is selected based on the fade conditions determined for each gateway. A beam plan is determined based on the proper subset of the gateway clusters. The beam plan is executed.
    Type: Application
    Filed: October 12, 2018
    Publication date: April 18, 2019
    Inventors: Jeffrey Freedman, Michael Mandell, Phil Rubin, Ted Kaplan, David Milliner, David Marshack, Erik Halvorson
  • Publication number: 20190028166
    Abstract: An apparatus includes a plurality of feeds that form analog beams. The plurality of feeds is divided into a plurality of panels, each panel including one or more feeds from the plurality of feeds. The apparatus also includes processing circuitry, which determines a target area for communications coverage and divides the target area into a plurality of regions. The processing circuitry generates, for each region, a plurality of analog beams. A subset of panels of the plurality of panels generates one or more analog beams of the plurality of analog beams. The plurality of analog beams covering each region forms a cluster. The processing circuitry generates, in each cluster, one or more hybrid beams. Each hybrid beam is a digital beam that is generated by combining one or more analog beams of the plurality of analog beams corresponding to the cluster.
    Type: Application
    Filed: September 29, 2017
    Publication date: January 24, 2019
    Inventors: Jeffrey Freedman, Michael Mandell, Phil Rubin, Ted Kaplan, David Milliner, David Marshack, Erik Halvorson
  • Publication number: 20180123674
    Abstract: An apparatus includes feeds to form analog beams. The feeds are divided into panels. The apparatus includes processing circuitry that divides a target area for communications coverage into regions, including a first region and a second region neighboring each other. The processing circuitry generates, for the first region, a first plurality of analog beams, forming a first cluster. The processing circuitry generates, in the first cluster from the first plurality of analog beams, a first plurality of hybrid beams arranged in a first arrangement in the first cluster. The processing circuitry generates, for the second region, a second plurality of analog beams, forming a second cluster. The processing circuitry generates, in the second cluster from the second plurality of analog beams, a second plurality of hybrid beams arranged in a second arrangement that is adjacent to the first plurality of hybrid beams in the first arrangement.
    Type: Application
    Filed: September 29, 2017
    Publication date: May 3, 2018
    Inventors: Jeffrey Freedman, Michael Mandell, Phil Rubin, Ted Kaplan, David Milliner, David Marshack, Erik Halvorson
  • Publication number: 20050171987
    Abstract: The present invention provides a folded low-complexity (FLC) pipeline. In one embodiment, the FLC pipeline includes a dot product unit chain configured to employ only addition and multiplication operations to compute intermediate numerators and denominators from a received signal matrix, a channel gain matrix and a noise matrix. Additionally, FLC pipeline also includes a divider stage configured to terminate the dot product unit chain by computing an unscaled quotient and a scale factor from ultimate ones of the intermediate numerators and denominators.
    Type: Application
    Filed: August 17, 2004
    Publication date: August 4, 2005
    Applicant: Texas Instruments Incorporated
    Inventors: Manish Goel, David Milliner, Srinath Hosur, Muhammad Ikram