Patents by Inventor David Minahan

David Minahan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060201065
    Abstract: Embodiments include methods and apparatus for mixing feedgases and producing synthesis gas. The apparatus includes a vessel containing a mixing system comprising one or more channels and a reaction zone downstream of the mixing system. A first feedgas and a second feedgas are separately injected into different injection portions of each channel, such that the second feedgas is injected in an acute direction into the first feedgas flowstream. The injected feedgases thereafter mix in a mixing portion of the channel. The mixing portion of each channel may have a reduced cross-sectional area so as to increase the total velocity of the feedgases while they mix. A feedgas mixture exits each channel of the mixing system to feed the reaction zone where it gets converted. Preferred embodiments include mixing O2 with a hydrocarbon gas and converting the mixture in a catalytic reaction zone to produce synthesis gas.
    Type: Application
    Filed: March 9, 2005
    Publication date: September 14, 2006
    Applicant: ConocoPhillips Company
    Inventors: Jamie Lucas, Guy Lewis, Harold Wright, Dale McIntyre, David Minahan, David Anderson
  • Publication number: 20050265920
    Abstract: The present invention relates to thermally stable supports and catalysts for use in high temperature operation, and methods of preparing such supports and catalysts, which includes adding a rare earth metal to an aluminum-containing precursor prior to calcining. The present invention can be more specifically seen as a support, process and catalyst wherein the thermally stable support comprises two rare earth aluminates of different molar ratios of aluminum to rare earth metal, and optionally, alumina and/or a rare earth oxide. More particularly, the invention relates to the use of noble metal catalysts comprising the thermally stable support for synthesis gas production via partial oxidation of light hydrocarbon (e.g., methane) with minimal deactivation over long-term operations and further relates to gas-to-liquids conversion processes.
    Type: Application
    Filed: May 27, 2005
    Publication date: December 1, 2005
    Applicant: ConocoPhillips Company
    Inventors: Cemal Ercan, Shuibo Xie, Harold Wright, Yaming Jin, Daxiang Wang, Kristi Fjare, David Minahan, Beatrice Ortego, David Simon
  • Publication number: 20050261383
    Abstract: The present invention relates to improved catalyst compositions, as well as methods of making and using such compositions. Preferred embodiments of the present invention comprise catalyst compositions having high melting point metallic alloys, and methods of preparing and using the catalysts. In particular, the metallic alloys are preferably rhodium alloys. Accordingly, the present invention also encompasses an improved method for converting a hydrocarbon containing gas and an atomic oxygen-containing gas to a gas mixture comprising hydrogen and carbon monoxide, i.e., syngas, using the catalyst compositions in accordance with the present invention. In addition, the present invention contemplates an improved method for converting hydrocarbon gas to liquid hydrocarbons using the novel syngas catalyst compositions described herein.
    Type: Application
    Filed: November 12, 2003
    Publication date: November 24, 2005
    Applicant: ConocoPhillips Company
    Inventors: Shuibo Xie, Chad Ricketson, David Minahan, Yaming Jin, Harold Wright
  • Publication number: 20050112047
    Abstract: Lanthanide-promoted rhodium-containing supported catalysts that are active for catalyzing the net partial oxidation of methane to CO and H2 are disclosed, along with their manner of making and high efficiency processes for producing synthesis gas employing the new catalysts. A preferred catalyst comprises highly dispersed, high surface area rhodium on a granular zirconia support with an intermediate coating of a lanthanide metal and/or oxide thereof and is thermally conditioned during catalyst preparation. In a preferred syngas production process a stream of methane-containing gas and O2 is passed over a thermally conditioned, high surface area Rh/Sm/zirconia granular catalyst in a short contact time reactor to produce a mixture of carbon monoxide and hydrogen.
    Type: Application
    Filed: January 3, 2005
    Publication date: May 26, 2005
    Applicant: ConocoPhillips Company
    Inventors: Joe Allison, Larry Swinney, Tianyan Niu, Kevin Ricketson, Daxiang Wang, Sriram Ramani, Gloria Straguzzi, David Minahan, Harold Wright, Baili Hu
  • Publication number: 20040052725
    Abstract: The present invention generally relates to catalysts comprising at least one oxidized active metal; at least one lanthanide; and a refractory support. The active metal is selected from the group consisting of rhodium, ruthenium, rhenium, platinum, palladium, iridium, and osmium. In particular, the present invention relates to catalysts effective for initiating and sustaining the partial oxidation of light hydrocarbons, preferably methane, to a product mixture comprising carbon monoxide and hydrogen, e.g. synthesis gas. The present invention still further discloses a method of making a supported synthesis gas catalyst comprising an oxidized metal and at least one lanthanide.
    Type: Application
    Filed: June 30, 2003
    Publication date: March 18, 2004
    Applicant: ConocoPhillips Company
    Inventors: Tianyan Niu, Daxiang Wang, David Minahan, Baili Hu, Harold A. Wright