Patents by Inventor David Mindell

David Mindell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10824170
    Abstract: An autonomous aerial vehicle includes a flight controller and a mission manager in communication with the flight controller. The flight controller is configured to navigate the autonomous aerial vehicle. The mission manager is configured to receive mission data. The mission data identifies both a landing zone and a designated touchdown zone located within the landing zone. The mission manager is further configured to provide flight control data to the flight controller. The flight control data causes the flight controller to navigate the autonomous aerial vehicle to a predetermined distance from the landing zone. The mission manager is further configured to determine, subsequent to the autonomous aerial vehicle reaching the predetermined distance, whether landing at the designated touchdown zone is feasible.
    Type: Grant
    Filed: April 9, 2019
    Date of Patent: November 3, 2020
    Assignee: AURORA FLIGHT SCIENCES CORPORATION
    Inventors: James D. Paduano, John B. Wissler, Michael D. Piedmonte, David A. Mindell
  • Publication number: 20200341137
    Abstract: A system and method is disclosed for measuring time of flight to an object. A transmitter transmits an electromagnetic signal and provides a reference signal corresponding to the electromagnetic signal. A receiver receives the electromagnetic signal and provides a response signal corresponding to the received electromagnetic signal. A detection circuit is configured to determine a time of flight between the transmitter and the receiver based upon the reference signal and the response signal.
    Type: Application
    Filed: March 10, 2020
    Publication date: October 29, 2020
    Applicant: Humatics Corporation
    Inventors: David A. Mindell, Gregory L. Charvat, Gary A. Cohen, Dana R. Yoerger
  • Publication number: 20200301422
    Abstract: An aircrew automation system that provides a pilot with high-fidelity knowledge of the aircraft's physical state, and notifies that pilot of any deviations in expected state based on predictive models. The aircrew automation may be provided as a non-invasive ride-along aircrew automation system that perceives the state of the aircraft through visual techniques, derives the aircraft state vector and other aircraft information, and communicates any deviations from expected aircraft state to the pilot.
    Type: Application
    Filed: May 4, 2020
    Publication date: September 24, 2020
    Inventors: Jessica E. Duda, John Tylko, David Mindell, Fabrice Kunzi, Michael Piedmonte, John Allee, Joshua Torgerson, Jason Ryan, James Donald Paduano, John Brooke Wissler, Andrew Musto, Wendy Feenstra
  • Publication number: 20200274226
    Abstract: A device comprising: a substrate; a semiconductor die mounted on the substrate; a transmit antenna fabricated on the substrate and configured to transmit radio-frequency (RF) signals at least at a first center frequency; a receive antenna fabricated on the substrate and configured to receive RF signals at least at a second center frequency different than the first center frequency; and circuitry integrated with the semiconductor die and configured to provide RF signals to the transmit antenna and to receive RF signals from the receive antenna.
    Type: Application
    Filed: May 12, 2020
    Publication date: August 27, 2020
    Applicant: Humatics Corporation
    Inventors: Gregory L. Charvat, David A. Mindell
  • Patent number: 10665923
    Abstract: A device comprising: a substrate; a semiconductor die mounted on the substrate; a transmit antenna fabricated on the substrate and configured to transmit radio-frequency (RF) signals at least at a first center frequency; a receive antenna fabricated on the substrate and configured to receive RF signals at least at a second center frequency different than the first center frequency; and circuitry integrated with the semiconductor die and configured to provide RF signals to the transmit antenna and to receive RF signals from the receive antenna.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: May 26, 2020
    Assignee: Humatics Corporation
    Inventors: Gregory L. Charvat, David A. Mindell
  • Patent number: 10642270
    Abstract: An aircrew automation system and method for use in an aircraft. The aircrew automation system comprises one or more processors, an optical perception system, an actuation system, and a human-machine interface. The optical perception system monitors, in real-time, one or more cockpit instruments of the aircraft visually to generate flight situation data. The actuation system mechanically engages at least one flight control of the aircraft in response to the one or more flight commands. The human-machine interface provides an interface between a human pilot and the aircrew automation system. The human-machine interface comprises a display device to display a status of the aircraft and the actuation system.
    Type: Grant
    Filed: July 8, 2019
    Date of Patent: May 5, 2020
    Assignee: Aurora Flight Sciences Corporation
    Inventors: Jessica E. Duda, John Tylko, David Mindell, Fabrice Kunzi, Michael Piedmonte, John Allee, Joshua Torgerson, Jason Ryan, James Donald Paduano, John Brooke Wissler, Andrew Musto, Wendy Feenstra
  • Patent number: 10591592
    Abstract: A system and method is disclosed for measuring time of flight to an object. A transmitter transmits an electromagnetic signal and provides a reference signal corresponding to the electromagnetic signal. A receiver receives the electromagnetic signal and provides a response signal corresponding to the received electromagnetic signal. A detection circuit is configured to determine a time of flight between the transmitter and the receiver based upon the reference signal and the response signal.
    Type: Grant
    Filed: June 14, 2016
    Date of Patent: March 17, 2020
    Assignee: Humatics Corporation
    Inventors: David A. Mindell, Gregory L. Charvat, Gary A. Cohen, Dana R. Yoerger
  • Publication number: 20200064840
    Abstract: An aircrew automation system and method for use in an aircraft. The aircrew automation system comprises one or more processors, an optical perception system, an actuation system, and a human-machine interface. The optical perception system monitors, in real-time, one or more cockpit instruments of the aircraft visually to generate flight situation data. The actuation system mechanically engages at least one flight control of the aircraft in response to the one or more flight commands. The human-machine interface provides an interface between a human pilot and the aircrew automation system. The human-machine interface comprises a display device to display a status of the aircraft and the actuation system.
    Type: Application
    Filed: July 8, 2019
    Publication date: February 27, 2020
    Inventors: Jessica E. Duda, John Tylko, David Mindell, Fabrice Kunzi, Michael Piedmonte, John Allee, Joshua Torgerson, Jason Ryan, James Donald Paduano, John Brooke Wissler, Andrew Musto, Wendy Feenstra
  • Publication number: 20200052374
    Abstract: A system comprising synchronization circuitry, a first interrogator, and a second interrogator. The first interrogator includes a transmit antenna; a first receive antenna, and circuitry configured to generate, using radio-frequency (RF) signal synthesis information received from the synchronization circuitry, a first RF signal for transmission by the transmit antenna, and generate, using the first RF signal and a second RF signal received from a target device by the first receive antenna, a first mixed RF signal indicative of a distance between the first interrogator and the target device. The second interrogator includes a second receive antenna, and circuitry configured to generate, using the RF signal synthesis information, a third RF signal; and generate, using the third RF signal and a fourth RF signal received from the target device by the second receive antenna, a second mixed RF signal indicative of a distance between the second interrogator and the target device.
    Type: Application
    Filed: October 21, 2019
    Publication date: February 13, 2020
    Applicant: Humatics Corporation
    Inventors: Gregory L. Charvat, David A. Mindell
  • Patent number: 10505256
    Abstract: A system comprising synchronization circuitry, a first interrogator, and a second interrogator. The first interrogator includes a transmit antenna; a first receive antenna, and circuitry configured to generate, using radio-frequency (RF) signal synthesis information received from the synchronization circuitry, a first RF signal for transmission by the transmit antenna, and generate, using the first RF signal and a second RF signal received from a target device by the first receive antenna, a first mixed RF signal indicative of a distance between the first interrogator and the target device. The second interrogator includes a second receive antenna, and circuitry configured to generate, using the RF signal synthesis information, a third RF signal; and generate, using the third RF signal and a fourth RF signal received from the target device by the second receive antenna, a second mixed RF signal indicative of a distance between the second interrogator and the target device.
    Type: Grant
    Filed: August 20, 2018
    Date of Patent: December 10, 2019
    Assignee: Humatics Corporation
    Inventors: Gregory L. Charvat, David A. Mindell
  • Publication number: 20190361109
    Abstract: A system for tracking position of objects in an industrial environment includes an interrogator, a transponder, and a processor. The interrogator transmits a signal and provides a first reference signal corresponding to the transmitted signal. The transponder provides a response signal. The interrogator receives the response signal and provides a second reference signal corresponding to the response signal. The processor determines a location of either the interrogator or the transponder, relative to the other, based on the two reference signals.
    Type: Application
    Filed: August 8, 2019
    Publication date: November 28, 2019
    Applicant: Humatics Corporation
    Inventors: David A. Mindell, Gregory L. Charvat, Michael Hirsch, James Campbell Kinsey, Matthew Ian Beane
  • Patent number: 10422870
    Abstract: A system for tracking position of objects in an industrial environment includes an interrogator, a transponder, and a processor. The interrogator transmits a signal and provides a first reference signal corresponding to the transmitted signal. The transponder provides a response signal. The interrogator receives the response signal and provides a second reference signal corresponding to the response signal. The processor determines a location of either the interrogator or the transponder, relative to the other, based on the two reference signals.
    Type: Grant
    Filed: April 23, 2018
    Date of Patent: September 24, 2019
    Assignee: Humatics Corporation
    Inventors: David A. Mindell, Gregory L. Charvat, Michael Hirsch, James Campbell Kinsey, Matthew Ian Beane
  • Publication number: 20190235532
    Abstract: An autonomous aerial vehicle includes a flight controller and a mission manager in communication with the flight controller. The flight controller is configured to navigate the autonomous aerial vehicle. The mission manager is configured to receive mission data. The mission data identifies both a landing zone and a designated touchdown zone located within the landing zone. The mission manager is further configured to provide flight control data to the flight controller. The flight control data causes the flight controller to navigate the autonomous aerial vehicle to a predetermined distance from the landing zone. The mission manager is further configured to determine, subsequent to the autonomous aerial vehicle reaching the predetermined distance, whether landing at the designated touchdown zone is feasible.
    Type: Application
    Filed: April 9, 2019
    Publication date: August 1, 2019
    Inventors: James D. Paduano, John B. Wissler, Michael D. Piedmonte, David A. Mindell
  • Patent number: 10359779
    Abstract: An aircrew automation system that provides a pilot with high-fidelity knowledge of the aircraft's physical state, and notifies that pilot of any deviations in expected state based on predictive models. The aircrew automation may be provided as a non-invasive ride-along aircrew automation system that perceives the state of the aircraft through visual techniques, derives the aircraft state vector and other aircraft information, and communicates any deviations from expected aircraft state to the pilot.
    Type: Grant
    Filed: March 21, 2017
    Date of Patent: July 23, 2019
    Assignee: Aurora Flight Sciences Corporation
    Inventors: Jessica E. Duda, John Tylko, David Mindell, Fabrice Kunzi, Michael Piedmonte, John Allee, Joshua Torgerson, Jason Ryan, James Donald Paduano, John Brooke Wissler, Andrew Musto, Wendy Feenstra
  • Publication number: 20190173157
    Abstract: A system comprising synchronization circuitry, a first interrogator, and a second interrogator. The first interrogator includes a transmit antenna; a first receive antenna, and circuitry configured to generate, using radio-frequency (RF) signal synthesis information received from the synchronization circuitry, a first RF signal for transmission by the transmit antenna, and generate, using the first RF signal and a second RF signal received from a target device by the first receive antenna, a first mixed RF signal indicative of a distance between the first interrogator and the target device. The second interrogator includes a second receive antenna, and circuitry configured to generate, using the RF signal synthesis information, a third RF signal; and generate, using the third RF signal and a fourth RF signal received from the target device by the second receive antenna, a second mixed RF signal indicative of a distance between the second interrogator and the target device.
    Type: Application
    Filed: August 20, 2018
    Publication date: June 6, 2019
    Applicant: Humatics Corporation
    Inventors: Gregory L. Charvat, David A. Mindell
  • Patent number: 10310517
    Abstract: An autonomous aerial system for delivering a payload to a waypoint. The autonomous aerial system may comprise an aerial vehicle to transport the payload to the waypoint and an onboard supervisory control system operatively coupled with the aerial vehicle. The aerial vehicle may be configured to navigate to the waypoint and to land at a designated touchdown zone within a landing zone at the waypoint. The onboard supervisory control system having a processor operatively coupled with a non-volatile memory device and a sensor package. The processor may be configured to generate flight control signal data based at least in part on data received via the sensor package, the sensor package configured to (1) dynamically sense and avoid obstacles along a flight route to the waypoint, and (2) perceive physical characteristics of the landing zone.
    Type: Grant
    Filed: April 4, 2018
    Date of Patent: June 4, 2019
    Assignee: Aurora Flight Sciences Corporation
    Inventors: James D. Paduano, John B. Wissler, Michael D. Piedmonte, David A. Mindell
  • Patent number: 10205218
    Abstract: A system comprising a first interrogator device that includes: a first antenna configured to transmit, to a target device, a first radio-frequency (RF) signal having a first center frequency; a second antenna configured to receive, from the target device, a second RF signal having a second center frequency that is a harmonic of the first frequency; and first circuitry configured to obtain, using the first RF signal and the second RF signal, a first mixed RF signal indicative of a first distance between the first interrogator and the target device. The system further comprises at least one processor configured to determine the first distance based, at least in part, on the first mixed RF signal, and determine a location of the target device based, at least in part, on the determined first distance.
    Type: Grant
    Filed: August 14, 2017
    Date of Patent: February 12, 2019
    Assignee: Humatics Corporation
    Inventors: Gregory L. Charvat, David A. Mindell
  • Publication number: 20180375190
    Abstract: A device comprising: a substrate; a semiconductor die mounted on the substrate; a transmit antenna fabricated on the substrate and configured to transmit radio-frequency (RF) signals at least at a first center frequency; a receive antenna fabricated on the substrate and configured to receive RF signals at least at a second center frequency different than the first center frequency; and circuitry integrated with the semiconductor die and configured to provide RF signals to the transmit antenna and to receive RF signals from the receive antenna.
    Type: Application
    Filed: September 4, 2018
    Publication date: December 27, 2018
    Applicant: Humatics Corporation
    Inventors: Gregory L. Charvat, David A. Mindell
  • Patent number: 10094909
    Abstract: A device comprising: a substrate; a semiconductor die mounted on the substrate; a transmit antenna fabricated on the substrate and configured to transmit radio-frequency (RF) signals at least at a first center frequency; a receive antenna fabricated on the substrate and configured to receive RF signals at least at a second center frequency different than the first center frequency; and circuitry integrated with the semiconductor die and configured to provide RF signals to the transmit antenna and to receive RF signals from the receive antenna.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: October 9, 2018
    Assignee: Humantics Corporation
    Inventors: Gregory L. Charvat, David A. Mindell
  • Patent number: 10074889
    Abstract: A device comprising: a substrate; a semiconductor die mounted on the substrate; a transmit antenna fabricated on the substrate and configured to transmit radio-frequency (RF) signals at least at a first center frequency; a receive antenna fabricated on the substrate and configured to receive RF signals at least at a second center frequency different than the first center frequency; and circuitry integrated with the semiconductor die and configured to provide RF signals to the transmit antenna and to receive RF signals from the receive antenna.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: September 11, 2018
    Assignee: Humatics Corporation
    Inventors: Gregory L. Charvat, David A. Mindell