Patents by Inventor David Ming Hui Foo
David Ming Hui Foo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12207909Abstract: The present invention relates to the field of medical monitoring, and in particular non-contact monitoring of one or more physiological parameters in a region of a patient during surgery. Systems, methods, and computer readable media are described for generating a pulsation field and/or a pulsation strength field of a region of interest (ROI) in a patient across a field of view of an image capture device, such as a video camera. The pulsation field and/or the pulsation strength field can be generated from changes in light intensities and/or colors of pixels in a video sequence captured by the image capture device. The pulsation field and/or the pulsation strength field can be combined with indocyanine green (ICG) information regarding ICG dye injected into the patient to identify sites where blood flow has decreased and/or ceased and that are at risk of hypoxia.Type: GrantFiled: December 8, 2022Date of Patent: January 28, 2025Assignee: Covidien LPInventors: Paul S. Addison, David Ming Hui Foo, Dominique Jacquel
-
Patent number: 12156724Abstract: The present invention relates to the field of medical monitoring, and in particular non-contact monitoring of one or more physiological parameters in a region of a patient during surgery. Systems, methods, and computer readable media are described for generating a pulsation field and/or a pulsation strength field of a region of interest (ROI) in a patient across a field of view of an image capture device, such as a video camera. The pulsation field and/or the pulsation strength field can be generated from changes in light intensities and/or colors of pixels in a video sequence captured by the image capture device. The pulsation field and/or the pulsation strength field can be combined with indocyanine green (ICG) information regarding ICG dye injected into the patient to identify sites where blood flow has decreased and/or ceased and that are at risk of hypoxia.Type: GrantFiled: November 7, 2022Date of Patent: December 3, 2024Assignee: Covidien LPInventors: Paul Stanley Addison, David Ming Hui Foo, Dominique Jacquel
-
VIDEO-BASED PATIENT MONITORING SYSTEMS AND ASSOCIATED METHODS FOR DETECTING AND MONITORING BREATHING
Publication number: 20240324883Abstract: The present disclosure relates to the field of medical monitoring, and, in particular, to non-contact detecting and monitoring of patient breathing. Systems, methods, and computer readable media are described for calculating a change in depth of regions in one or more regions of interest (ROI's) on a patient and assigning one or more visual indicators to the regions based on the calculated changes in depth of the regions over time. In some embodiments, one or more breathing parameter signals corresponding to the regions can be generated and/or analyzed. In these and other embodiments, the one or more visual indicators can be displayed overlaid onto the regions in real-time. In these and still other embodiments, the systems, methods, and/or computer readable media (i) can display one or more generated breathing parameter signals in real-time and/or (ii) can trigger an alert and/or an alarm when a breathing abnormality is detected.Type: ApplicationFiled: June 13, 2024Publication date: October 3, 2024Inventors: Dominique JACQUEL, Paul S. ADDISON, David Ming Hui FOO -
Video-based patient monitoring systems and associated methods for detecting and monitoring breathing
Patent number: 12016655Abstract: The present disclosure relates to the field of medical monitoring, and, in particular, to non-contact detecting and monitoring of patient breathing. Systems, methods, and computer readable media are described for calculating a change in depth of regions in one or more regions of interest (ROI's) on a patient and assigning one or more visual indicators to the regions based on the calculated changes in depth of the regions over time. In some embodiments, one or more breathing parameter signals corresponding to the regions can be generated and/or analyzed. In these and other embodiments, the one or more visual indicators can be displayed overlaid onto the regions in real-time. In these and still other embodiments, the systems, methods, and/or computer readable media (i) can display one or more generated breathing parameter signals in real-time and/or (ii) can trigger an alert and/or an alarm when a breathing abnormality is detected.Type: GrantFiled: March 25, 2022Date of Patent: June 25, 2024Assignee: Covidien LPInventors: Dominique Jacquel, Paul S. Addison, David Ming Hui Foo -
Publication number: 20230320622Abstract: The present invention relates to the field of medical monitoring, and in particular non-contact video monitoring to measure tidal volume of a patient. Systems, methods, and computer readable media are described for determining a region of interest of a patient and monitoring that region of interest to determine tidal volume of the patient. This may be accomplished using a depth sensing camera to monitor a patient and determine how their chest and/or other body parts are moving as the patient breathes. This sensing of movement can be used to determine the tidal volume measurement.Type: ApplicationFiled: June 8, 2023Publication date: October 12, 2023Inventors: Paul S. ADDISON, Dominique JACQUEL, David Ming Hui FOO
-
Patent number: 11712176Abstract: The present invention relates to the field of medical monitoring, and in particular non-contact video monitoring to measure tidal volume of a patient. Systems, methods, and computer readable media are described for determining a region of interest of a patient and monitoring that region of interest to determine tidal volume of the patient. This may be accomplished using a depth sensing camera to monitor a patient and determine how their chest and/or other body parts are moving as the patient breathes. This sensing of movement can be used to determine the tidal volume measurement.Type: GrantFiled: December 13, 2018Date of Patent: August 1, 2023Assignee: Covidien, LPInventors: Paul S. Addison, Dominique Jacquel, David Ming Hui Foo
-
Publication number: 20230110666Abstract: The present invention relates to the field of medical monitoring, and in particular non-contact monitoring of one or more physiological parameters in a region of a patient during surgery. Systems, methods, and computer readable media are described for generating a pulsation field and/or a pulsation strength field of a region of interest (ROI) in a patient across a field of view of an image capture device, such as a video camera. The pulsation field and/or the pulsation strength field can be generated from changes in light intensities and/or colors of pixels in a video sequence captured by the image capture device. The pulsation field and/or the pulsation strength field can be combined with indocyanine green (ICG) information regarding ICG dye injected into the patient to identify sites where blood flow has decreased and/or ceased and that are at risk of hypoxia.Type: ApplicationFiled: November 7, 2022Publication date: April 13, 2023Inventors: Paul Stanley ADDISON, David Ming Hui FOO, Dominique JACQUEL
-
Publication number: 20230111386Abstract: The present invention relates to the field of medical monitoring, and in particular non-contact monitoring of one or more physiological parameters in a region of a patient during surgery. Systems, methods, and computer readable media are described for generating a pulsation field and/or a pulsation strength field of a region of interest (ROI) in a patient across a field of view of an image capture device, such as a video camera. The pulsation field and/or the pulsation strength field can be generated from changes in light intensities and/or colors of pixels in a video sequence captured by the image capture device. The pulsation field and/or the pulsation strength field can be combined with indocyanine green (ICG) information regarding ICG dye injected into the patient to identify sites where blood flow has decreased and/or ceased and that are at risk of hypoxia.Type: ApplicationFiled: December 8, 2022Publication date: April 13, 2023Inventors: Paul S. ADDISON, David Ming Hui FOO, Dean MONTGOMERY
-
Patent number: 11547313Abstract: The present invention relates to the field of medical monitoring, and in particular non-contact monitoring of one or more physiological parameters in a region of a patient during surgery. Systems, methods, and computer readable media are described for generating a pulsation field and/or a pulsation strength field of a region of interest (ROI) in a patient across a field of view of an image capture device, such as a video camera. The pulsation field and/or the pulsation strength field can be generated from changes in light intensities and/or colors of pixels in a video sequence captured by the image capture device. The pulsation field and/or the pulsation strength field can be combined with indocyanine green (ICG) information regarding ICG dye injected into the patient to identify sites where blood flow has decreased and/or ceased and that are at risk of hypoxia.Type: GrantFiled: June 4, 2019Date of Patent: January 10, 2023Assignee: Covidien LPInventors: Paul Stanley Addison, David Ming Hui Foo, Dominique Jacquel
-
Patent number: 11510584Abstract: The present invention relates to the field of medical monitoring, and in particular non-contact monitoring of one or more physiological parameters in a region of a patient during surgery. Systems, methods, and computer readable media are described for generating a pulsation field and/or a pulsation strength field of a region of interest (ROI) in a patient across a field of view of an image capture device, such as a video camera. The pulsation field and/or the pulsation strength field can be generated from changes in light intensities and/or colors of pixels in a video sequence captured by the image capture device. The pulsation field and/or the pulsation strength field can be combined with indocyanine green (ICG) information regarding ICG dye injected into the patient to identify sites where blood flow has decreased and/or ceased and that are at risk of hypoxia.Type: GrantFiled: June 4, 2019Date of Patent: November 29, 2022Assignee: Covidien LPInventors: Paul Stanley Addison, David Ming Hui Foo, Dominique Jacquel
-
VIDEO-BASED PATIENT MONITORING SYSTEMS AND ASSOCIATED METHODS FOR DETECTING AND MONITORING BREATHING
Publication number: 20220211333Abstract: The present disclosure relates to the field of medical monitoring, and, in particular, to non-contact detecting and monitoring of patient breathing. Systems, methods, and computer readable media are described for calculating a change in depth of regions in one or more regions of interest (ROI's) on a patient and assigning one or more visual indicators to the regions based on the calculated changes in depth of the regions over time. In some embodiments, one or more breathing parameter signals corresponding to the regions can be generated and/or analyzed. In these and other embodiments, the one or more visual indicators can be displayed overlaid onto the regions in real-time. In these and still other embodiments, the systems, methods, and/or computer readable media (i) can display one or more generated breathing parameter signals in real-time and/or (ii) can trigger an alert and/or an alarm when a breathing abnormality is detected.Type: ApplicationFiled: March 25, 2022Publication date: July 7, 2022Inventors: Dominique JACQUEL, Paul S. ADDISON, David Ming Hui FOO -
Video-based patient monitoring systems and associated methods for detecting and monitoring breathing
Patent number: 11311252Abstract: The present disclosure relates to the field of medical monitoring, and, in particular, to non-contact detecting and monitoring of patient breathing. Systems, methods, and computer readable media are described for calculating a change in depth of regions in one or more regions of interest (ROI's) on a patient and assigning one or more visual indicators to the regions based on the calculated changes in depth of the regions over time. In some embodiments, one or more breathing parameter signals corresponding to the regions can be generated and/or analyzed. In these and other embodiments, the one or more visual indicators can be displayed overlaid onto the regions in real-time. In these and still other embodiments, the systems, methods, and/or computer readable media (i) can display one or more generated breathing parameter signals in real-time and/or (ii) can trigger an alert and/or an alarm when a breathing abnormality is detected.Type: GrantFiled: August 8, 2019Date of Patent: April 26, 2022Assignee: Covidien LPInventors: Dominique Jacquel, Paul S. Addison, David Ming Hui Foo -
VIDEO-BASED PATIENT MONITORING SYSTEMS AND ASSOCIATED METHODS FOR DETECTING AND MONITORING BREATHING
Publication number: 20200046302Abstract: The present disclosure relates to the field of medical monitoring, and, in particular, to non-contact detecting and monitoring of patient breathing. Systems, methods, and computer readable media are described for calculating a change in depth of regions in one or more regions of interest (ROI's) on a patient and assigning one or more visual indicators to the regions based on the calculated changes in depth of the regions over time. In some embodiments, one or more breathing parameter signals corresponding to the regions can be generated and/or analyzed. In these and other embodiments, the one or more visual indicators can be displayed overlaid onto the regions in real-time. In these and still other embodiments, the systems, methods, and/or computer readable media (i) can display one or more generated breathing parameter signals in real-time and/or (ii) can trigger an alert and/or an alarm when a breathing abnormality is detected.Type: ApplicationFiled: August 8, 2019Publication date: February 13, 2020Inventors: Dominique Jacquel, Paul S. Addison, David Ming Hui Foo -
Publication number: 20190380599Abstract: The present invention relates to the field of medical monitoring, and in particular non-contact monitoring of one or more physiological parameters in a region of a patient during surgery. Systems, methods, and computer readable media are described for generating a pulsation field and/or a pulsation strength field of a region of interest (ROI) in a patient across a field of view of an image capture device, such as a video camera. The pulsation field and/or the pulsation strength field can be generated from changes in light intensities and/or colors of pixels in a video sequence captured by the image capture device. The pulsation field and/or the pulsation strength field can be combined with indocyanine green (ICG) information regarding ICG dye injected into the patient to identify sites where blood flow has decreased and/or ceased and that are at risk of hypoxia.Type: ApplicationFiled: June 4, 2019Publication date: December 19, 2019Inventors: Paul Stanley Addison, David Ming Hui Foo, Dominique Jacquel
-
Publication number: 20190380807Abstract: The present invention relates to the field of medical monitoring, and in particular non-contact monitoring of one or more physiological parameters in a region of a patient during surgery. Systems, methods, and computer readable media are described for generating a pulsation field and/or a pulsation strength field of a region of interest (ROI) in a patient across a field of view of an image capture device, such as a video camera. The pulsation field and/or the pulsation strength field can be generated from changes in light intensities and/or colors of pixels in a video sequence captured by the image capture device. The pulsation field and/or the pulsation strength field can be combined with indocyanine green (ICG) information regarding ICG dye injected into the patient to identify sites where blood flow has decreased and/or ceased and that are at risk of hypoxia.Type: ApplicationFiled: June 4, 2019Publication date: December 19, 2019Inventors: Paul Stanley Addison, David Ming Hui Foo, Dominique Jacquel
-
Publication number: 20190209046Abstract: The present invention relates to the field of medical monitoring, and in particular non-contact video monitoring to measure tidal volume of a patient. Systems, methods, and computer readable media are described for determining a region of interest of a patient and monitoring that region of interest to determine tidal volume of the patient. This may be accomplished using a depth sensing camera to monitor a patient and determine how their chest and/or other body parts are moving as the patient breathes. This sensing of movement can be used to determine the tidal volume measurement.Type: ApplicationFiled: December 13, 2018Publication date: July 11, 2019Applicant: Covidien LPInventors: Paul S. Addison, Dominique Jacquel, David Ming Hui Foo