Patents by Inventor David MINZENMAY

David MINZENMAY has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240102475
    Abstract: The invention relates to an impeller (1) for an implantable, vascular support system (2), at least comprising: —an impeller body (3) having a first longitudinal portion (4) and a second longitudinal portion (5); —at least one blade (6) formed in the first longitudinal portion (4) and designed to axially convey a fluid by means of a rotational movement; —at least one magnet (7) provided and encapsulated in the second longitudinal portion (5).
    Type: Application
    Filed: August 24, 2023
    Publication date: March 28, 2024
    Inventors: Armin Schuelke, Ingo Stotz, Johannes Bette, David Minzenmay
  • Patent number: 11804767
    Abstract: The invention relates to a magnetic coupling element (100) with a magnetic bearing function. The magnetic coupling element (100) has a drive-side coupling magnet (109) arranged on a drive shaft (106), and also an output-side coupling magnet (115) arranged on an output shaft (112), the output-side coupling magnet (115) being magnetically coupled to the drive-side coupling magnet (109), and finally a bearing magnet ring (118) which is non-rotatably mounted with respect to the drive-side or output-side coupling magnet (109) or (115), a bearing magnet portion (133, 136) of the bearing magnet ring (118) having the same polarity as a coupling magnet portion (127, 130) opposite the bearing magnet portion (136).
    Type: Grant
    Filed: June 6, 2022
    Date of Patent: October 31, 2023
    Assignee: KARDION GMBH
    Inventors: Andreas Vogt, Armin Schuelke, Xiang Li, David Minzenmay
  • Patent number: 11754075
    Abstract: An impeller (1) for an implantable vascular support system (2) is provided. The impeller includes an impeller body (3) having a first longitudinal portion (4) and a second longitudinal portion (5) forming a first inner rotor (12) having at least one magnet encapsulated in the second longitudinal portion (5). At least one blade (6) formed in the first longitudinal portion (4) is configured to axially convey a fluid upon rotation. A second outer rotor (13) extends axially and includes at least one magnet. The first rotor (12) and the second rotor (13) form a magnetic coupling (14). The magnets of the first and second rotor being arranged to partially axially overlap with an axial offset and are entirely radially offset.
    Type: Grant
    Filed: July 9, 2019
    Date of Patent: September 12, 2023
    Assignee: KARDION GMBH
    Inventors: Armin Schuelke, Ingo Stotz, Johannes Bette, David Minzenmay
  • Publication number: 20220407403
    Abstract: The invention relates to a magnetic coupling element (100) with a magnetic bearing function. The magnetic coupling element (100) has a drive-side coupling magnet (109) arranged on a drive shaft (106), and also an output-side coupling magnet (115) arranged on an output shaft (112), the output-side coupling magnet (115) being magnetically coupled to the drive-side coupling magnet (109), and finally a bearing magnet ring (118) which is non-rotatably mounted with respect to the drive-side or output-side coupling magnet (109) or (115), a bearing magnet portion (133, 136) of the bearing magnet ring (118) having the same polarity as a coupling magnet portion (127, 130) opposite the bearing magnet portion (136).
    Type: Application
    Filed: June 6, 2022
    Publication date: December 22, 2022
    Inventors: Andreas Vogt, Armin Schuelke, Xiang Li, David Minzenmay
  • Patent number: 11504286
    Abstract: A personal mobility device includes a frame, a plurality of wheels attached to the frame and one or more pneumatic motors. Each of the one or more pneumatic motors has a drive shaft in operative connection with at least one of the plurality of wheels. The personal mobility device further includes at least one tank (that is, a storage container) for storage of a pressurized gas in operative connection with the one or more pneumatic motors to supply pressurized gas to the one or more pneumatic motors and a control system in operative connection with the at least one tank and with the one or more pneumatic motors.
    Type: Grant
    Filed: January 4, 2017
    Date of Patent: November 22, 2022
    Assignees: University of Pittsburgh—Of the Commonwealth System of Higher Education, The United States Government as represented by the Department of Veterans Affairs, FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.
    Inventors: Rory Alan Cooper, Hongwu Wang, Brandon Joseph Daveler, Benjamin Todd Gebrosky, Garrett G. Grindle, Jonathan L. Pearlman, Urs Schneider, David Minzenmay
  • Publication number: 20220241580
    Abstract: A sealed micropump includes an integrated motor and at least one impeller for generating fluid flow inside a housing of the micropump. The impeller includes a radial sliding bearing with a spider bearing for supporting an impeller pin of the impeller inside the housing. The impeller pin includes a sheathing of a material different from a material of the spider bearing.
    Type: Application
    Filed: September 26, 2019
    Publication date: August 4, 2022
    Inventors: Ingo Stotz, Johannes Bette, David Minzenmay, Fabian Eiberger
  • Patent number: 11368081
    Abstract: The invention relates to a magnetic coupling element (100) with a magnetic bearing function. The magnetic coupling element (100) has a drive-side coupling magnet (109) arranged on a drive shaft (106), and also an output-side coupling magnet (115) arranged on an output shaft (112), the output-side coupling magnet (115) being magnetically coupled to the drive-side coupling magnet (109), and finally a bearing magnet ring (118) which is non-rotatably mounted with respect to the drive-side or output-side coupling magnet (109) or (115), a bearing magnet portion (133, 136) of the bearing magnet ring (118) having the same polarity as a coupling magnet portion (127, 130) opposite the bearing magnet portion (136).
    Type: Grant
    Filed: January 21, 2019
    Date of Patent: June 21, 2022
    Assignee: Kardion GmbH
    Inventors: Andreas Vogt, Armin Schuelke, Xiang Li, David Minzenmay
  • Publication number: 20220161021
    Abstract: A minimally invasive miniaturized percutaneous mechanical circulatory support system for transcatheter delivery of a pump to the heart that actively unloads the left ventricle by pumping blood from the left ventricle into the ascending aorta and systemic circulation. The pump may include a tubular housing, a motor, an impeller configured to be rotated by the motor. The impeller may be rotated by the motor, via a shaft with an annular polymeric seal around the shaft, or via a magnetic drive. The system may have an insertion tool having a tubular body and configured to axially movably receive the circulatory support device, and an introducer sheath configured to axially movably receive the insertion tool.
    Type: Application
    Filed: November 18, 2021
    Publication date: May 26, 2022
    Inventors: Marvin Mitze, Hans Christof, Vladimir Popov, Martin Schwarz, Leon Wenning, Johannes Bette, Attila Fabiunke, Julian Görries, Jan Schöfer, Valentin Rex, Johannes Berner, Johannes Ferch, Hans-Baldung Luley, Tom Döhring, Jens Burghaus, Inga Schellenberg, Hardy Baumbach, Annika Bach, Ingo Stotz, Julian Kassel, Armin Schuelke, Stefan Henneck, David Minzenmay, Thomas Alexander Schlebusch, Tobias Schmid, Tjalf Pirk, Martina Budde, Ricardo Ehrenpfordt, Marc Schmid, Ahmad Mansour, niko Baeuerle, Peter Wassermann, Fabian Eiberger, Kenneth M. Martin, Thomas Friedrich, Mario Heintze
  • Publication number: 20220161018
    Abstract: Disclosed is a mechanical circulatory support system for transcatheter delivery to the heart, having a removable guidewire aid to assist with inserting the guidewire along a path that avoids a rotating impeller. The system may comprise a catheter shaft and a circulatory support device carried by the shaft. The device may comprise a tubular housing, an impeller and the guidewire aid. The guidewire aid may include a removable guidewire guide tube. The guide tube may enter a first guidewire port of the tubular housing, exit the tubular housing via a second guidewire port on a side wall of the tubular housing on a distal side of the impeller, enter a third guidewire port on a proximal side of the impeller, and extend proximally through the catheter shaft.
    Type: Application
    Filed: November 18, 2021
    Publication date: May 26, 2022
    Inventors: Marvin Mitze, Hans Christof, Vladimir Popov, Martin Schwarz, Leon Wenning, Johannes Bette, Attila Fabiunke, Julian Görries, Jan Schöfer, Valentin Rex, Johannes Berner, Johannes Ferch, Hans-Baldung Luley, Tom Döhring, Jens Burghaus, Inga Schellenberg, Hardy Baumbach, Annika Bach, Ingo Stotz, Julian Kassel, Armin Schuelke, Stefan Henneck, David Minzenmay, Thomas Alexander Schlebusch, Tobias Schmid, Tjalf Pirk, Martina Budde, Ricardo Ehrenpfordt, Marc Schmid, Ahmad Mansour, Niko Baeuerle, Peter Wassermann, Fabian Eiberger, Kenneth M. Martin
  • Publication number: 20220161019
    Abstract: Disclosed is a minimally invasive miniaturized percutaneous mechanical circulatory support system. The system may be placed across the aortic valve via a single femoral arterial access point. The system includes a low profile axial rotary blood pump carried by the distal end of a catheter. The system can be percutaneously inserted through the femoral artery and positioned across the aortic valve into the left ventricle. The device actively unloads the left ventricle by pumping blood from the left ventricle into the ascending aorta and systemic circulation. A magnetic drive and encased motor housing allows for purgeless operation for extended periods of time to treat various ailments, for example more than six hours as acute therapy for cardiogenic shock.
    Type: Application
    Filed: November 18, 2021
    Publication date: May 26, 2022
    Inventors: Marvin Mitze, Hans Christof, Vladimir Popov, Martin Schwarz, Leon Wenning, Johannes Bette, Attila Fabiunke, Sina Gerlach, Johannes Stigloher, Julian Görries, Jan Schöfer, Valentin Rex, Johannes Berner, Bernhard Ehni, Johannes Ferch, Hans-Baldung Luley, Tom Döhring, Jens Burghaus, Inga Schellenberg, Hardy Baumbach, Annika Bach, Ingo Stotz, Julian Kassel, Armin Schuelke, Stefan Henneck, David Minzenmay, Thomas Alexander Schlebusch, Tobias Schmid, Tjalf Pirk, Martina Budde, Ricardo Ehrenpfordt, Marc Schmid, Ahmad Mansour, Niko Baeuerle, Ralf Strasswiemer, Uwe Vollmer, Manuel Gaertner, Fabian Eiberger, Tobias Baechle, Karin Schneider, Peter Wassermann
  • Publication number: 20210379355
    Abstract: The invention relates to an impeller housing (1) for an implantable, vascular support system (2), at least comprising: an impeller housing body (3) having a first longitudinal portion (4) and a second longitudinal portion (5); at least one holder (8), which is disposed in the first longitudinal portion (4), wherein the holder (8) is configured such that it can hold a bearing (6) for rotatably mounting an impeller (9) in the center of a cross-section of the impeller housing body (3) through which a fluid can flow, at least one opening (7) through which liquid can flow and which is disposed in the second longitudinal portion (5) and in a lateral surface of the impeller housing body (3).
    Type: Application
    Filed: July 9, 2019
    Publication date: December 9, 2021
    Inventors: Armin Schuelke, Ingo Stotz, Johannes Bette, David Minzenmay
  • Publication number: 20210379358
    Abstract: The invention relates to an impeller (1) for an implantable, vascular support system (2), at least comprising: —an impeller body (3) having a first longitudinal portion (4) and a second longitudinal portion (5); —at least one blade (6) formed in the first longitudinal portion (4) and designed to axially convey a fluid by means of a rotational movement; —at least one magnet (7) provided and encapsulated in the second longitudinal portion (5).
    Type: Application
    Filed: July 9, 2019
    Publication date: December 9, 2021
    Inventors: Armin Schuelke, Ingo Stotz, Johannes Bette, David Minzenmay
  • Publication number: 20210346680
    Abstract: The invention relates to a rotor bearing system (1). Said system comprises a housing (80) in which a first permanent magnet (30) is mounted such that it can rotate about a first axis (105). A rotor (70) for conveying a liquid comprises a second hollow-cylindrical permanent magnet (40), which is mounted such that it can rotate about a second axis. The first permanent magnet (30) and the second permanent magnet (40) overlap axially at least partially, wherein the first permanent magnet (30) is disposed offset relative to the second permanent magnet (40). In the axial overlap region (160) of the first permanent magnet (30) and the second permanent magnet (40), the housing (80) is positioned between the two permanent magnets (30, 40).
    Type: Application
    Filed: May 16, 2019
    Publication date: November 11, 2021
    Inventors: Andreas Vogt, Ingo Stotz, Johannes Bette, Armin Schuelke, Xiang Li, Uwe Vollmer, David Minzenmay
  • Publication number: 20210338999
    Abstract: The invention relates to a stator vane device (105) for guiding the flow of a fluid flowing out of an outlet opening (110) of a heart support system (100). The stator vane device (105) has at least one stator vane (115), which can be connected to the heart support system (100) and arranged in the region of the outlet opening (110). The at least one stator vane (115) is formed such that it can be folded together to take an insertion state of the heart support system (100) and can be unfolded to take a flow guiding state. The at least one stator vane (115) is designed to project radially or obliquely from the heart support system (100) in the flow guiding state.
    Type: Application
    Filed: June 21, 2019
    Publication date: November 4, 2021
    Inventors: Ingo Stotz, Johannes Bette, Armin Schuelke, David Minzenmay
  • Publication number: 20210339004
    Abstract: The invention relates to a line device (105) for a ventricular assist system (100), wherein the line device (105) comprises a guide cannula (145), which is structured at least partially along a direction of extent; and, furthermore, the line device (105) comprises an electrical conducting element (145), which is arranged in the guide cannula (140), wherein the electrical conducting element (145) comprises a multilayer structure.
    Type: Application
    Filed: June 6, 2019
    Publication date: November 4, 2021
    Inventors: Thomas Alexander Schlebusch, David Minzenmay, Julian Kassel, Tobias Baechle
  • Publication number: 20210316133
    Abstract: The invention relates to a motor housing module (110) for sealing a motor compartment of a motor of a heart support system. The motor housing module (110) has at least one feed-through portion (205), at least one feed-through line (210), and at least one contact pin (215). The feed-through portion (205) is designed to establish an electrical connection between the heart support system and a connection cable in order to externally contact the heart support system. The at least one feed-through line (210) is embedded in the feed-through portion (205) and extends through the feed-through portion (205). The feed-through line (210) can be connected to the motor and to the connection cable. A first end of the at least one contact pin (215) is embedded in the feed-through portion (205) and a second end of the contact pin (215) projects from the feed-through portion (205) on a side facing away from the motor compartment.
    Type: Application
    Filed: May 30, 2019
    Publication date: October 14, 2021
    Inventors: Julian Kassel, David Minzenmay, Thomas Alexander Schlebusch
  • Publication number: 20210290939
    Abstract: The invention relates to an apparatus (100) for attaching a cardiac support system to an insertion device, wherein the apparatus (100) is shaped to releasably couple the cardiac support system to the insertion device. The apparatus (100) has at least one main body (105), in particular a tubular main body (115), and a clamping device (110) with at least one clamping wing (115). The clamping device (110) is designed to mechanically couple the cardiac support system to the insertion device in an attachment state and to release the cardiac support system from the insertion device by displacing and/or flipping open the at least one clamping wing (115) in a release state.
    Type: Application
    Filed: May 30, 2019
    Publication date: September 23, 2021
    Inventors: Hardy Baumbach, Inga Schellenberg, David Minzenmay
  • Publication number: 20210290929
    Abstract: The invention relates to an electronics module (102) for a ventricular assist device, wherein the ventricular assist device has a motor housing for accommodating a pump motor. The electronics module (102) comprises an electronics section (204) for accommodating at least one electronic component (206) and/or at least one electrically conductive contacting element (208), and a coupling section (202) designed as a joint between the motor housing (104) and the electronics section (204) or as a separate component to be joined, wherein the motor housing (104) and the electronics section (204) are combined or can be combined via the coupling section (202) with one another to form a fluid-tight module housing (104) to be arranged in a blood vessel.
    Type: Application
    Filed: May 30, 2019
    Publication date: September 23, 2021
    Inventors: Ingo Stotz, Julian Kassel, Armin Schuelke, Stefan Henneck, David Minzenmay, Thomas Alexander Schlebusch
  • Publication number: 20210290931
    Abstract: The invention relates to an apparatus (100) for anchoring a ventricular assist system in a blood vessel, the apparatus (100) being able to assume an insertion state for insertion of the ventricular assist system into the blood vessel, and the apparatus (100) being able to assume an anchoring state in order to anchor the ventricular assist system in the blood vessel. The apparatus (100) has at least one fixing means (105) for fixing the apparatus (100) to the ventricular assist system (205), a crown (110) and a connection means (115). The crown (110) is formed from at least one unfolding element (120). The unfolding element (120) is designed to unfold during the transfer from the insertion state into the anchoring state in order to enlarge the diameter of the crown (110) so as to anchor the apparatus (100) in the blood vessel. The connection means (115) is designed to connect the crown (110) to the fixing means (105).
    Type: Application
    Filed: May 30, 2019
    Publication date: September 23, 2021
    Inventors: Hardy Baumbach, Armin Schuelke, Inga Schellenberg, David Minzenmay
  • Publication number: 20210290937
    Abstract: The invention relates to a line device (105) for conducting a blood flow for a heart support system. The heart support system has a head unit and an outlet unit. The line device (105) has a main part (205). The main part (205) has, at a first end, a first attachment section (210) for attaching the line device (105) to the head unit and, at a second end, a second attachment section (215) for attaching the line device (105) to the outlet unit. Furthermore, the main part (205) has a mesh section (220) between the attachment sections (210, 215), wherein the mesh section (220) has a mesh structure (230) formed from at least one mesh wire (225). In addition, the main part (205) has an inlet section (235), arranged in the first attachment section (210), for introducing the blood flow into the main part (205).
    Type: Application
    Filed: May 30, 2019
    Publication date: September 23, 2021
    Inventors: Hardy Baumbach, Inga Schellenberg, David Minzenmay