Patents by Inventor David N. Villalpando

David N. Villalpando has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9347869
    Abstract: A lid for a multiwell plates which allows improved light scattering measurement of liquid samples within the wells of a multiwell plate, and which at the same time mitigates evaporation from said samples is disclosed. A surface element protrudes from the bottom of the lid into the fluid in a well. The protruding element may be hollow or solid, and the beam of light, directed into the element may act to capture or direct the beam while preventing backscatter from reaching the light scattering detector or detectors. The protruding element may thus direct the beam from the well without the beam having to pass through a fluid/air interface. The angle and shape of the lid surfaces may be optimized to minimize or eliminate back-reflection. Light absorbing and/or light blocking colorization may also be employed to minimize or eliminate back reflection. Evaporation is controlled by physically capping the well with the lid, either sealing against the face at the top of the well or the inside surface of the well.
    Type: Grant
    Filed: November 25, 2014
    Date of Patent: May 24, 2016
    Assignee: WYATT TECHNOLOGY CORPORATION
    Inventors: Michael I. Larkin, Amy D. Hanlon, Daniel I. Some, Richard J. Sleiman, David N. Villalpando
  • Patent number: 9146192
    Abstract: Various embodiments of integrated measurement cell systems for the simultaneous or near simultaneous measurement of light scattering and UV absorption measurements, and methods of their use, are disclosed. In the flow cell implementations, the height of the measurement cell is traversed by the UV beam multiple times by beam directing optics, allowing thereby, the accurate determination of concentration present in the integrated flow cell and allowing the user to select the desired sensitivity which is proportional to the number of passes the beam makes through the cell. Batch implementations also allow for near simultaneous measurement of light scattering and UV absorption within the cuvette. These embodiments aid in the reduction or elimination of errors due to interdetector band broadening while also decreasing the amount of sample required and improving design flexibility of integrated measurement systems.
    Type: Grant
    Filed: May 16, 2013
    Date of Patent: September 29, 2015
    Assignee: WYATT TECHNOLOGY CORPORATION
    Inventors: Daniel I. Some, David N. Villalpando
  • Publication number: 20150077739
    Abstract: A lid for a multiwell plates which allows improved light scattering measurement of liquid samples within the wells of a multiwell plate, and which at the same time mitigates evaporation from said samples is disclosed. A surface element protrudes from the bottom of the lid into the fluid in a well. The protruding element may be hollow or solid, and the beam of light, directed into the element may act to capture or direct the beam while preventing backscatter from reaching the light scattering detector or detectors. The protruding element may thus direct the beam from the well without the beam having to pass through a fluid/air interface. The angle and shape of the lid surfaces may be optimized to minimize or eliminate back-reflection. Light absorbing and/or light blocking colorization may also be employed to minimize or eliminate back reflection. Evaporation is controlled by physically capping the well with the lid, either sealing against the face at the top of the well or the inside surface of the well.
    Type: Application
    Filed: November 25, 2014
    Publication date: March 19, 2015
    Applicant: WYATT TECHNOLOGY CORPORATION
    Inventors: Michael I. Larkin, Amy D. Hanlon, Daniel I. Some, Richard J. Sleiman, David N. Villalpando
  • Patent number: 8976353
    Abstract: A lid for multiwell plates, allowing improved optical measurement of liquid samples within its wells, while mitigating evaporation from said samples, is disclosed. A surface element protrudes from the bottom of the lid into the fluid within a well. The protruding element may be hollow or solid such that light directed into the element may act to capture or direct the beam while preventing backscatter from reaching one or more detectors. The protruding element may direct the beam from the well without requiring the beam to pass through a fluid/air interface. The angle and shape of the lid surfaces and/or light absorbing/blocking colorization may be employed to minimize or eliminate back reflection. Evaporation is controlled by physically capping the well with the lid, either sealing against the face at the top of the well or the inside surface of the well.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: March 10, 2015
    Assignee: Wyatt Technology Corporation
    Inventors: Michael I. Larkin, Amy D. Hanlon, Daniel I. Some, Richard J. Sleiman, David N. Villalpando
  • Patent number: 8964177
    Abstract: A method and apparatus for the illumination of a sample are disclosed. An imaging illumination light source is directed to pass through an absorbing/transmitting structure in order to illuminate the sample and any containing vessel. A diffuser may aid in properly dispersing the light from the imaging illumination source. A light sensitive detector such as a camera records an image therefrom. The beam from a light scattering source is directed through the sample and any containing vessel, and upon exiting the sample/vessel, impinges upon the absorbing/transmitting structure selected to absorb at the wavelength of the light scattering source. Scattered light from the sample is collected by a photo detector. Methods of use for the novel lighting system are also disclosed.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: February 24, 2015
    Assignee: Wyatt Technology Corporation
    Inventors: Daniel I. Some, Michael I. Larkin, Peter G. Neilson, David N. Villalpando
  • Publication number: 20130308121
    Abstract: Various embodiments of integrated measurement cell systems for the simultaneous or near simultaneous measurement of light scattering and UV absorption measurements, and methods of their use, are disclosed. In the flow cell implementations, the height of the measurement cell is traversed by the UV beam multiple times by beam directing optics, allowing thereby, the accurate determination of concentration present in the integrated flow cell and allowing the user to select the desired sensitivity which is proportional to the number of passes the beam makes through the cell. Batch implementations also allow for near simultaneous measurement of light scattering and UV absorption within the cuvette. These embodiments aid in the reduction or elimination of errors due to interdetector band broadening while also decreasing the amount of sample required and improving design flexibility of integrated measurement systems.
    Type: Application
    Filed: May 16, 2013
    Publication date: November 21, 2013
    Applicant: Wyatt Technology Corporation
    Inventors: Daniel I. Some, David N. Villalpando
  • Publication number: 20130286381
    Abstract: A method and apparatus for the illumination of a sample are disclosed. An imaging illumination light source is directed to pass through an absorbing/transmitting structure in order to illuminate the sample and any containing vessel. A diffuser may aid in properly dispersing the light from the imaging illumination source. A light sensitive detector such as a camera records an image therefrom. The beam from a light scattering source is directed through the sample and any containing vessel, and upon exiting the sample/vessel, impinges upon the absorbing/transmitting structure selected to absorb at the wavelength of the light scattering source. Scattered light from the sample is collected by a photo detector. Methods of use for the novel lighting system are also disclosed.
    Type: Application
    Filed: April 26, 2013
    Publication date: October 31, 2013
    Applicant: Wyatt Technology Corporation
    Inventors: Daniel I. Some, Michael I. Larkin, Peter G. Neilson, David N. Villalpando
  • Publication number: 20130176556
    Abstract: A lid for multiwell plates, allowing improved optical measurement of liquid samples within its wells, while mitigating evaporation from said samples, is disclosed. A surface element protrudes from the bottom of the lid into the fluid within a well. The protruding element may be hollow or solid such that light directed into the element may act to capture or direct the beam while preventing backscatter from reaching one or more detectors. The protruding element may direct the beam from the well without requiring the beam to pass through a fluid/air interface. The angle and shape of the lid surfaces and/or light absorbing/blocking colorization may be employed to minimize or eliminate back reflection. Evaporation is controlled by physically capping the well with the lid, either sealing against the face at the top of the well or the inside surface of the well.
    Type: Application
    Filed: June 8, 2012
    Publication date: July 11, 2013
    Applicant: WYATT TECHNOLOGY CORPORATION
    Inventors: Michael I. Larkin, Amy D. Hanlon, Daniel I. Some, Richard J. Sleiman, David N. Villalpando
  • Patent number: 8360244
    Abstract: A new type of asymmetric flow field flow fractionator, A4F, is described permitting improved sample fractionation means by providing a range of available channel lengths within the same A4F unit. With such an apparatus, samples may be optimally separated by performing such fractionations as a function of channel length. The ability to vary channel length within the same A4F unit has heretofore been unavailable.
    Type: Grant
    Filed: June 9, 2008
    Date of Patent: January 29, 2013
    Assignee: Wyatt Technology Corporation
    Inventors: Philip J. Wyatt, Michelle H. Chen, David N. Villalpando
  • Publication number: 20090301942
    Abstract: A new type of asymmetric flow field flow fractionator, A4F, is described permitting improved sample fractionation means by providing a range of available channel lengths within the same A4F unit. With such an apparatus, samples may be optimally separated by performing such fractionations as a function of channel length. The ability to vary channel length within the same A4F unit has heretofore been unavailable.
    Type: Application
    Filed: June 9, 2008
    Publication date: December 10, 2009
    Applicant: Wyatt Technology Corporation
    Inventors: Philip J. Wyatt, Michelle H. Chen, David N. Villalpando